Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment

  1. Zhao Shan
  2. Leike Li
  3. Constance Lynn Atkins
  4. Meng Wang
  5. Yankai Wen
  6. Jongmin Jeong
  7. Nicolas F Moreno
  8. Dechun Feng
  9. Xun Gui
  10. Ningyan Zhang
  11. Chun Geun Lee
  12. Jack A Elias
  13. William M Lee
  14. Bin Gao
  15. Fong Wilson Lam
  16. Zhiqiang An  Is a corresponding author
  17. Cynthia Ju  Is a corresponding author
  1. Yunnan University, China
  2. UTHealth McGovern Medical School, United States
  3. National Institute on Alcohol Abuse and Alcoholism, United States
  4. Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, United States
  5. Brown University, United States
  6. University of Texas Southwestern Med School, United States
  7. Baylor College of Medicine, United States
  8. Brown Foundation Institute of Molecular Medicine, United States

Abstract

Background: Hepatic platelet accumulation contributes to acetaminophen (APAP)-induced liver injury (AILI). However, little is known about the molecular pathways involved in platelet recruitment to the liver and whether targeting such pathways could attenuate AILI.

Methods: Mice were fasted overnight before i.p. injected with APAP at a dose of 210 mg/kg for male mice and 325 mg/kg for female mice. Platelets adherent to Kupffer cells were determined in both mice and patients overdosed with APAP. The impact of α-Chi3l1 on alleviation of AILI was determined in a therapeutic setting, and liver injury was analyzed.

Results: The present study unveiled a critical role of chitinase 3-like-1 (Chi3l1) in hepatic platelet recruitment during AILI. Increased Chi3l1 and platelets in the liver were observed in patients and mice overdosed with APAP. Compared to wild-type (WT) mice, Chil1-/- mice developed attenuated AILI with markedly reduced hepatic platelet accumulation. Mechanistic studies revealed that Chi3l1 signaled through CD44 on macrophages to induce podoplanin expression, which mediated platelet recruitment through C-type lectin-like receptor 2. Moreover, APAP treatment of Cd44-/- mice resulted in much lower numbers of hepatic platelets and liver injury than WT mice, a phenotype similar to that in Chil1-/- mice. Recombinant Chi3l1 could restore hepatic platelet accumulation and AILI in Chil1-/- mice, but not in Cd44-/- mice. Importantly, we generated anti-Chi3l1 monoclonal antibodies and demonstrated that they could effectively inhibit hepatic platelet accumulation and AILI.

Conclusions: we uncovered the Chi3l1/CD44 axis as a critical pathway mediating APAP-induced hepatic platelet recruitment and tissue injury. We demonstrated the feasibility and potential of targeting Chi3l1 to treat AILI.

Funding: ZS received funding from NSFC (32071129). FWL received funding from NIH (GM123261). ALFSG received funding from NIDDK (DK 058369). ZA received funding from CPRIT (RP150551 and RP190561) and the Welch Foundation (AU-0042-20030616). C.J. received funding from NIH (DK122708, DK109574, DK121330, and DK122796) and support from a University of Texas System Translational STARs award. Portions of this work was supported with resources and the use of facilities of the Michael E. DeBakey VA Medical Center and funding from Department of Veterans Affairs I01 BX002551 (Equipment, Personnel, Supplies). The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Data availability

Intravital microscopy videos can be reached via the following links: https://bcm.box.com/s/15hmtryyrdl302mihrsm034ure87x4ea (Supplemental video 1, PBS treatment) and https://bcm.box.com/s/tuljfmstvv4lvoksx16fkxkpirkekynz (Supplemental Video 2, APAP treatment)(n=6-7 mice/group, 4-15 videos/mouse).

Article and author information

Author details

  1. Zhao Shan

    School of Life Science, Yunnan University, Kunming, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5064-1023
  2. Leike Li

    Texas Therapeutics Institute, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Constance Lynn Atkins

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Meng Wang

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yankai Wen

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8144-1515
  6. Jongmin Jeong

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Nicolas F Moreno

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dechun Feng

    Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xun Gui

    Texas Therapeutics Institute, UTHealth McGovern Medical School, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ningyan Zhang

    Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Chun Geun Lee

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jack A Elias

    Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. William M Lee

    Department of Internal Medicine, University of Texas Southwestern Med School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Bin Gao

    Laboratory of Liver Disease, National Institute on Alcohol Abuse and Alcoholism, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Fong Wilson Lam

    Division of Pediatric Critical Care Medicine, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Zhiqiang An

    University of Texas Health Science Center at Houston, Brown Foundation Institute of Molecular Medicine, Houston, United States
    For correspondence
    zhiqiang.an@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9309-2335
  17. Cynthia Ju

    Department of Anesthesiology, UTHealth McGovern Medical School, Houston, United States
    For correspondence
    Changqing.Ju@uth.tmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1640-7169

Funding

National Natural Science Foundation of China (32071129)

  • Zhao Shan

National Institutes of Health (GM123261)

  • Fong Wilson Lam

National Institutes of Health (DK122708,DK109574,DK121330,and DK122796)

  • Cynthia Ju

National Institute of Diabetes and Digestive and Kidney Diseases (DK 058369)

  • William M Lee

Cancer Prevention and Research Institute of Texas (RP150551 and RP190561)

  • Zhiqiang An

Welch Foundation (AU-0042-20030616)

  • Zhiqiang An

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies described have been approved by the UTHealth Institutional Animal Care and Use Committee (IACUC AWC-20-0074)

Human subjects: Serum samples from patients diagnosed with APAP-induced liver failure on day 1 of admission were obtained from the biobank of the Acute Liver Failure Study Group (ALFSG) at UT Southwestern Medical Center, Dallas, TX, USA. The study was designed and carried out in accordance with the principles of ALFSG and approved by the Ethics Committee of ALFSG (HSC-MC-19-0084). Formalin-fixed, paraffin-embedded human liver biopsies from patients diagnosed with APAP-induced liver failure were obtained from the National Institutes of Health-funded Liver Tissue Cell Distribution System at the University of Minnesota, which was funded by NIH contract # HHSN276201200017C.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,526
    views
  • 319
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhao Shan
  2. Leike Li
  3. Constance Lynn Atkins
  4. Meng Wang
  5. Yankai Wen
  6. Jongmin Jeong
  7. Nicolas F Moreno
  8. Dechun Feng
  9. Xun Gui
  10. Ningyan Zhang
  11. Chun Geun Lee
  12. Jack A Elias
  13. William M Lee
  14. Bin Gao
  15. Fong Wilson Lam
  16. Zhiqiang An
  17. Cynthia Ju
(2021)
Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment
eLife 10:e68571.
https://doi.org/10.7554/eLife.68571

Share this article

https://doi.org/10.7554/eLife.68571

Further reading

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).