The pro-regenerative effects of HyperIL6 in drug induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling

  1. Jinrui Dong
  2. Sivakumar Viswanathan
  3. Eleonora Adami
  4. Sebastian Schafer
  5. Fathima F Kuthubudeen
  6. Anissa A Widjaja
  7. Stuart A Cook  Is a corresponding author
  1. Duke-National University of Singapore Medical School, Singapore
  2. National Heart Research Institute of Singapore, Singapore

Abstract

It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data are provided with this paper.

Article and author information

Author details

  1. Jinrui Dong

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    No competing interests declared.
  2. Sivakumar Viswanathan

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    No competing interests declared.
  3. Eleonora Adami

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    No competing interests declared.
  4. Sebastian Schafer

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    Sebastian Schafer, is a co-inventor of the patent applications: WO/2017/103108 (Treatment of Fibrosis), WO/2018/109174 (IL11 Antibodies), WO/2018/109170 (IL11RA Antibodies), and US 2020/0262910 (Treatment of Hepatotoxicity). Is a co-founder and shareholder of Enleofen Bio PTE LTD..
  5. Fathima F Kuthubudeen

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    No competing interests declared.
  6. Anissa A Widjaja

    Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School, Singapore, Singapore
    Competing interests
    Anissa A Widjaja, A.A.W is a co-inventor of the patent application: US 2020/0262910 (Treatment of Hepatotoxicity)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-7608
  7. Stuart A Cook

    CVMD, National Heart Research Institute of Singapore, Singapore, Singapore
    For correspondence
    stuart.cook@duke-nus.edu.sg
    Competing interests
    Stuart A Cook, S.A.C. is a co-inventor of the patent applications: WO/2017/103108 (TREATMENT OF FIBROSIS), WO/2018/109174 (IL11 ANTIBODIES), WO/2018/109170 (IL11RA ANTIBODIES), and US 2020/0262910 (Treatment of Hepatotoxicity). S.A.C. is a co-founder and shareholder of Enleofen Bio PTE LTD..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6628-194X

Funding

National Medical Research Council (NMRC/STaR/0029/2017)

  • Stuart A Cook

National Medical Research Council (NMRC Centre Grant to the NHCS)

  • Stuart A Cook

National Medical Research Council (MOH‐CIRG18nov‐0002)

  • Stuart A Cook

Medical Research Council (MRC-LMS)

  • Stuart A Cook

Goh Foundation

  • Stuart A Cook

Tanoto Foundation

  • Stuart A Cook

National Medical Research Council (NMRC/OFYIRG/0053/2017)

  • Anissa A Widjaja

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal studies were carried out in compliance with the recommendations in the Guidelines on the Care and Use of Animals for Scientific Purposes of the National Advisory Committee for Laboratory Animal Research (NACLAR). All experimental procedures were approved (SHS/2014/0925 and SHS/2019/1482) and conducted in accordance with the SingHealth Institutional Animal Care and Use Committee.

Copyright

© 2021, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,361
    views
  • 257
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jinrui Dong
  2. Sivakumar Viswanathan
  3. Eleonora Adami
  4. Sebastian Schafer
  5. Fathima F Kuthubudeen
  6. Anissa A Widjaja
  7. Stuart A Cook
(2021)
The pro-regenerative effects of HyperIL6 in drug induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling
eLife 10:e68843.
https://doi.org/10.7554/eLife.68843

Share this article

https://doi.org/10.7554/eLife.68843

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.