Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia

Abstract

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.

Data availability

Lentivector plasmid sequences are available on Dryad. https://doi.org/10.5061/dryad.2330r1band doi:10.5061/dryad.m0cfxpp75.The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD024067.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anne-Claire Godet

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Emilie Roussel

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian P David

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9842-1548
  4. Fransky Hantelys

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Florent Morfoisse

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Joffrey Alves

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Françoise Pujol

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabelle Ader

    Inserm, UMR 1301, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Edouard Bertrand

    Institut de Génétique Moléculaire de Montpellier, Mont[ellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Odile Burlet-Schiltz

    Institut de Pharmacologie et Biologie Structurale, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Carine Froment

    Institut de Pharmacologie et Biologie Structurale, CNRS, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3688-5560
  12. Anthony K Henras

    5Molecular, Cellular and Developmental Biology Unit, CNRS, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Patrice Vitali

    5Molecular, Cellular and Developmental Biology Unit, CNRS, Université Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Eric Lacazette

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  15. Florence Tatin

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Barbara Garmy-Susini

    Inserm UMR 1297, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  17. Anne-Catherine Prats

    Inserm UMR 1297, Toulouse, France
    For correspondence
    anne-catherine.prats@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5282-3776

Funding

Agence Nationale de la Recherche (ANR-18-CE11-0020-RIBOCARD)

  • Anne-Catherine Prats

Agence Nationale de la Recherche (ProFI ANR-10-INBS-08)

  • Odile Burlet-Schiltz
  • Carine Froment

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Godet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,763
    views
  • 201
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne-Claire Godet
  2. Emilie Roussel
  3. Florian P David
  4. Fransky Hantelys
  5. Florent Morfoisse
  6. Joffrey Alves
  7. Françoise Pujol
  8. Isabelle Ader
  9. Edouard Bertrand
  10. Odile Burlet-Schiltz
  11. Carine Froment
  12. Anthony K Henras
  13. Patrice Vitali
  14. Eric Lacazette
  15. Florence Tatin
  16. Barbara Garmy-Susini
  17. Anne-Catherine Prats
(2022)
Long non-coding RNA Neat1 and paraspeckle components are translational regulators in hypoxia
eLife 11:e69162.
https://doi.org/10.7554/eLife.69162

Share this article

https://doi.org/10.7554/eLife.69162

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.