Neural tube-associated boundary caps are a major source of mural cells in the skin

  1. Gaspard Gerschenfeld
  2. Fanny Coulpier
  3. Aurélie Gresset
  4. Pernelle Pulh
  5. Bastien Job
  6. Thomas Topilko
  7. Julie Siegenthaler, Ph.D.
  8. Maria Eleni Kastriti
  9. Isabelle Brunet
  10. Patrick Charnay
  11. Piotr Topilko  Is a corresponding author
  1. Ecole normale supérieure, CNRS, Inserm, Université PSL, France
  2. Mondor Institute of Biomedical Research, France
  3. Institut Gustave Roussy, France
  4. Institut du Cerveau et de la Moelle Epinière, France
  5. University of Colorado Anschutz Medical Campus, United States
  6. Karolinska Institute, Sweden
  7. Collège de France, France

Abstract

In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them and differentiate into pericytes and vascular smooth muscle cells. Genetic ablation of this population affects the organization of the skin vascular network. Our results reveal the heterogeneity and extended potential of the BC population in mice, which gives rise to mural cells, in addition to previously described neurons, Schwann cells and melanocytes. Finally, our results suggest that mural specification of BC derivatives takes place before their migration along nerves to the mouse skin.

Data availability

Single-cell RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-8972.

The following data sets were generated

Article and author information

Author details

  1. Gaspard Gerschenfeld

    Developmental Biology, Ecole normale supérieure, CNRS, Inserm, Université PSL, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2456-704X
  2. Fanny Coulpier

    UMR U955 INSERM UPEC, Mondor Institute of Biomedical Research, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Aurélie Gresset

    Developmental Biology, Ecole normale supérieure, CNRS, Inserm, Université PSL, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pernelle Pulh

    Developmental Biology, Ecole normale supérieure, CNRS, Inserm, Université PSL, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bastien Job

    Inserm US23, AMMICA, Institut Gustave Roussy, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Thomas Topilko

    Laboratoire de Plasticité Structurale, Institut du Cerveau et de la Moelle Epinière, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Julie Siegenthaler, Ph.D.

    Department of Pediatrics Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Maria Eleni Kastriti

    Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Isabelle Brunet

    Center for Interdisciplinary Research in Biology, Collège de France, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5490-2937
  10. Patrick Charnay

    Developmental Biology, Ecole normale supérieure, CNRS, Inserm, Université PSL, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Piotr Topilko

    UMR U955 INSERM UPEC, Mondor Institute of Biomedical Research, Créteil, France
    For correspondence
    piotr.topilko@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7381-6770

Funding

Agence Nationale de la Recherche (ANR-10-LABX-54 MEMOLIFE)

  • Patrick Charnay

Agence Nationale de la Recherche (ANR-11-IDEX-0001-02 PSL* Research University)

  • Patrick Charnay

Institut National de la Santé et de la Recherche Médicale

  • Patrick Charnay
  • Piotr Topilko

Centre National de la Recherche Scientifique

  • Patrick Charnay
  • Piotr Topilko

Institut National Du Cancer

  • Patrick Charnay
  • Piotr Topilko

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

  • Patrick Charnay
  • Piotr Topilko

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal manipulations were performed according to French and European Union regulations. According to these regulations, no ethics committee approval was required for this study which only used mouse embryos and newborns.

Copyright

© 2023, Gerschenfeld et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 552
    views
  • 123
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gaspard Gerschenfeld
  2. Fanny Coulpier
  3. Aurélie Gresset
  4. Pernelle Pulh
  5. Bastien Job
  6. Thomas Topilko
  7. Julie Siegenthaler, Ph.D.
  8. Maria Eleni Kastriti
  9. Isabelle Brunet
  10. Patrick Charnay
  11. Piotr Topilko
(2023)
Neural tube-associated boundary caps are a major source of mural cells in the skin
eLife 12:e69413.
https://doi.org/10.7554/eLife.69413

Share this article

https://doi.org/10.7554/eLife.69413

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.