Inference of the SARS-CoV-2 generation time using UK household data

  1. William Stephen Hart  Is a corresponding author
  2. Sam Abbott
  3. Akira Endo
  4. Joel Hellewell
  5. Elizabeth Miller
  6. Nick Andrews
  7. Philip K Maini
  8. Sebastian Funk
  9. Robin N Thompson
  1. University of Oxford, United Kingdom
  2. London School of Hygiene and Tropical Medicine, United Kingdom
  3. Public Health England, United Kingdom
  4. University of Warwick, United Kingdom

Abstract

The distribution of the generation time (the interval between individuals becoming infected and transmitting the virus) characterises changes in the transmission risk during SARS-CoV-2 infections. Inferring the generation time distribution is essential to plan and assess public health measures. We previously developed a mechanistic approach for estimating the generation time, which provided an improved fit to data from the early months of the COVID-19 pandemic (December 2019-March 2020) compared to existing models (Hart et al., 2021). However, few estimates of the generation time exist based on data from later in the pandemic. Here, using data from a household study conducted from March-November 2020 in the UK, we provide updated estimates of the generation time. We considered both a commonly used approach in which the transmission risk is assumed to be independent of when symptoms develop, and our mechanistic model in which transmission and symptoms are linked explicitly. Assuming independent transmission and symptoms, we estimated a mean generation time (4.2 days, 95% credible interval 3.3-5.3 days) similar to previous estimates from other countries, but with a higher standard deviation (4.9 days, 3.0-8.3 days). Using our mechanistic approach, we estimated a longer mean generation time (5.9 days, 5.2-7.0 days) and a similar standard deviation (4.8 days, 4.0-6.3 days). As well as estimating the generation time using data from the entire study period, we also considered whether the generation time varied temporally. Both models suggest a shorter mean generation time in September-November 2020 compared to earlier months. Since the SARS-CoV-2 generation time appears to be changing, further data collection and analysis is necessary to continue to monitor ongoing transmission and inform future public health policy decisions.

Data availability

All data generated or analysed during this study are included in the manuscript and its supporting files; a Source Data file has been provided for Figure 1. Code for reproducing our results is available at https://github.com/will-s-hart/UK-generation-times.

The following data sets were generated

Article and author information

Author details

  1. William Stephen Hart

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    For correspondence
    william.hart@keble.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2504-6860
  2. Sam Abbott

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Akira Endo

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    Akira Endo, received a research grant from Taisho Pharmaceutical Co., Ltd..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6377-7296
  4. Joel Hellewell

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Elizabeth Miller

    Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1884-0097
  6. Nick Andrews

    Data and Analytical Sciences, UK Health Security Agency, Public Health England, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Philip K Maini

    Mathematical Institute, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0146-9164
  8. Sebastian Funk

    Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2842-3406
  9. Robin N Thompson

    Mathematics Institute, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8545-5212

Funding

Engineering and Physical Sciences Research Council (Excellence Award,EP/R513295/1)

  • William Stephen Hart

National Institute for Health Research (NIHR200929)

  • Elizabeth Miller

Taisho Pharmaceutical Co., Ltd (Research grant)

  • Akira Endo

UKRI (EP/V053507/1)

  • Robin N Thompson

The authors had sole responsibility for the study design, data collection, data analysis, data interpretation, and writing of the report.

Copyright

© 2022, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,483
    views
  • 206
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Stephen Hart
  2. Sam Abbott
  3. Akira Endo
  4. Joel Hellewell
  5. Elizabeth Miller
  6. Nick Andrews
  7. Philip K Maini
  8. Sebastian Funk
  9. Robin N Thompson
(2022)
Inference of the SARS-CoV-2 generation time using UK household data
eLife 11:e70767.
https://doi.org/10.7554/eLife.70767

Share this article

https://doi.org/10.7554/eLife.70767

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.