Abstract

Organ fibroblasts are essential components of homeostatic and diseased tissues. They participate in sculpting the extracellular matrix, sensing the microenvironment and communicating with other resident cells. Recent studies have revealed transcriptomic heterogeneity among fibroblasts within and between organs. To dissect the basis of inter-organ heterogeneity, we compare the gene expression of murine fibroblasts from different tissues (tail, skin, lung, liver, heart, kidney, gonads) and show that they display distinct positional and organ-specific transcriptome signatures that reflect their embryonic origins. We demonstrate that expression of genes typically attributed to the surrounding parenchyma by fibroblasts is established in embryonic development and largely maintained in culture, bioengineered tissues and ectopic transplants. Targeted knockdown of key organ-specific transcription factors affects fibroblast functions, in particular genes involved in the modulation of fibrosis and inflammation. In conclusion, our data reveal that adult fibroblasts maintain an embryonic gene expression signature inherited from their organ of origin, thereby increasing our understanding of adult fibroblast heterogeneity. The knowledge of this tissue-specific gene signature may assist in targeting fibrotic diseases in a more precise, organ-specific manner.

Data availability

All data has been made available through public databases, as per statement in main manuscript

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Elvira Forte

    Jackson Laboratory, Bar Harbor, United States
    For correspondence
    elviraforte83@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5555-9122
  2. Mirana Ramialison

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6315-4777
  3. Hieu T Nim

    Faculty of Information Technology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Madison Mara

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jacky Y Li

    Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Rachel Cohn

    Jackson Laboratory, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sandra L Daigle

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah Boyd

    Centre for Inflammatory Diseases, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Edouard G Stanley

    Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew G Elefanty

    Murdoch Children's Research Institute, Parkville, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. John Travis Hinson

    Jackson Laboratory, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Mauro W Costa

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Nadia A Rosenthal

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Milena B Furtado

    Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1387-325X

Funding

Australian Research Council

  • Nadia A Rosenthal

National Health and Medical Research Council

  • Mirana Ramialison
  • Mauro W Costa
  • Nadia A Rosenthal

Heart Foundation

  • Mirana Ramialison

Jackson Laboratory

  • Nadia A Rosenthal

National Institutes of Health

  • Nadia A Rosenthal

Leducq Foundation for Cardiovascular Research

  • Nadia A Rosenthal

Australian Government

  • Nadia A Rosenthal

State Government of Victoria

  • Nadia A Rosenthal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#16010) of the Jackson Laboratory. All surgery was performed under tribromoethanol anesthesia, and every effort was made to minimize pain and suffering.

Human subjects: Human samples were obtained through the Sydney Heart Bank (SHB) in Australia. Investigators have not collected patient samples or been privy to patient records.

Copyright

© 2022, Forte et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,666
    views
  • 512
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elvira Forte
  2. Mirana Ramialison
  3. Hieu T Nim
  4. Madison Mara
  5. Jacky Y Li
  6. Rachel Cohn
  7. Sandra L Daigle
  8. Sarah Boyd
  9. Edouard G Stanley
  10. Andrew G Elefanty
  11. John Travis Hinson
  12. Mauro W Costa
  13. Nadia A Rosenthal
  14. Milena B Furtado
(2022)
Adult mouse fibroblasts retain organ-specific transcriptomic identity
eLife 11:e71008.
https://doi.org/10.7554/eLife.71008

Share this article

https://doi.org/10.7554/eLife.71008

Further reading

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.

    1. Cell Biology
    2. Neuroscience
    Anne Drougard, Eric H Ma ... John Andrew Pospisilik
    Research Article

    Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.