Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes)

  1. Zsolt Merényi
  2. Máté Virágh
  3. Emile Gluck-Thaler
  4. Jason C Slot
  5. Brigitta Kiss
  6. Torda Varga
  7. András Geösel
  8. Botond Hegedüs
  9. Balázs Bálint
  10. László G Nagy  Is a corresponding author
  1. Biological Research Center, Hungary
  2. University of Pennsylvania, United States
  3. Ohio State University, United States
  4. Hungarian University of Agriculture and Life Sciences, Hungary

Abstract

Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts and developmental gene expression, but not RNA editing or a 'developmental hourglass' act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of non-adaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.

Data availability

Raw RNA-Seq reads have been deposited to NCBI's GEO archive (GSE176181).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zsolt Merényi

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  2. Máté Virágh

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Emile Gluck-Thaler

    Department of Biology, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jason C Slot

    Department of Plant Pathology, Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6731-3405
  5. Brigitta Kiss

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Torda Varga

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. András Geösel

    Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  8. Botond Hegedüs

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  9. Balázs Bálint

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  10. László G Nagy

    Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
    For correspondence
    lnagy@fungenomelab.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4102-8566

Funding

Hungarian National Research, Development, and Innovation Office (GINOP-2.3.2-15-2016-00052)

  • László G Nagy

Momentum program of the Hungarian Academy of Science (LP2019-13/2019)

  • László G Nagy

European Research Council (758161)

  • László G Nagy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Merényi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,940
    views
  • 341
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zsolt Merényi
  2. Máté Virágh
  3. Emile Gluck-Thaler
  4. Jason C Slot
  5. Brigitta Kiss
  6. Torda Varga
  7. András Geösel
  8. Botond Hegedüs
  9. Balázs Bálint
  10. László G Nagy
(2022)
Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes)
eLife 11:e71348.
https://doi.org/10.7554/eLife.71348

Share this article

https://doi.org/10.7554/eLife.71348

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Elise S Bruguera, Jacob P Mahoney, William I Weis
    Research Article

    Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.