Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea

  1. Marlene Henríquez-Urrutia
  2. Rebecca Spanner
  3. Consuelo Olivares-Yánez
  4. Aldo Seguel-Avello
  5. Rodrigo Pérez-Lara
  6. Hector Guillén-Alonso
  7. Robert Winkler
  8. Alfredo Heriberto Herrera-Estrella
  9. Paulo Canessa  Is a corresponding author
  10. Luis F Larrondo  Is a corresponding author
  1. Pontificia Universidad Católica de Chile, Chile
  2. Millennium Institute for Integrative Biology, Chile
  3. Cinvestav Unidad Irapuato, Mexico
  4. Unidad de Genómica Avanzada - Langebio, Mexico
  5. Universidad Andrés Bello, Chile

Abstract

Circadian clocks are important for an individual’s fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. By utilizing luciferase reporters to monitor the T. atroviride core-clock, we confirmed the existence of circadian oscillations of ~26h that are temperature-compensated and modulated by environmental cues such as light and temperature. Notably, the presence of such rhythms appears to be highly dependent on the nutritional composition of the media. Heterologous expression of the T. atroviride negative clock component (tafrq) in a clock null (Δfrq) strain of Neurospora crassa restored core clock function in the latter fungus, with the same period observed in T. atroviride, confirming the role of tafrq as a bona fide core-clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core-clock negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components modulate development and secondary metabolism in this fungus, affecting the production of several molecules, including volatile compounds, such as 6-pentyl-α-pyrone (6-PP). Notably, we detected the rhythmic production of distinct T. atroviride volatile organic compounds (VOCs), which depended on its circadian clock. Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2 and Table 1.

Article and author information

Author details

  1. Marlene Henríquez-Urrutia

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  2. Rebecca Spanner

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  3. Consuelo Olivares-Yánez

    Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
    Competing interests
    No competing interests declared.
  4. Aldo Seguel-Avello

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  5. Rodrigo Pérez-Lara

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  6. Hector Guillén-Alonso

    Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  7. Robert Winkler

    Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  8. Alfredo Heriberto Herrera-Estrella

    Laboratorio de expresión génica y desarrollo en hongos, Unidad de Genómica Avanzada - Langebio, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  9. Paulo Canessa

    Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
    For correspondence
    paulo.canessa@unab.cl
    Competing interests
    No competing interests declared.
  10. Luis F Larrondo

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    For correspondence
    llarrondo@bio.puc.cl
    Competing interests
    Luis F Larrondo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8832-7109

Funding

Agencia Nacional de Investigación y Desarrollo (FONDECYT Regular 1211715)

  • Luis F Larrondo

Agencia Nacional de Investigación y Desarrollo (FONDECYT Postdoc 3180328)

  • Aldo Seguel-Avello

Agencia Nacional de Investigación y Desarrollo (FONDECYT Postdoc 3190628)

  • Consuelo Olivares-Yánez

Howard Hughes Medical Institute (the International Research Scholar program)

  • Luis F Larrondo

Agencia Nacional de Investigación y Desarrollo (Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio ICN17_022)

  • Paulo Canessa
  • Luis F Larrondo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Henríquez-Urrutia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,411
    views
  • 371
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marlene Henríquez-Urrutia
  2. Rebecca Spanner
  3. Consuelo Olivares-Yánez
  4. Aldo Seguel-Avello
  5. Rodrigo Pérez-Lara
  6. Hector Guillén-Alonso
  7. Robert Winkler
  8. Alfredo Heriberto Herrera-Estrella
  9. Paulo Canessa
  10. Luis F Larrondo
(2022)
Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea
eLife 11:e71358.
https://doi.org/10.7554/eLife.71358

Share this article

https://doi.org/10.7554/eLife.71358

Further reading

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.

    1. Cell Biology
    Chun-Wei Chen, Jeffery B Chavez ... Bruce J Nicholson
    Research Article Updated

    Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.