In situ X-ray assisted electron microscopy staining for large biological samples

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner  Is a corresponding author
  1. Princeton University, United States
  2. Paul Scherrer Institute, Switzerland

Abstract

Electron microscopy of biological tissue has recently seen an unprecedented increase in imaging throughput moving the ultrastructural analysis of large tissue blocks such as whole brains into the realm of the feasible. However, homogeneous, high quality electron microscopy staining of large biological samples is still a major challenge. To date, assessing the staining quality in electron microscopy requires running a sample through the entire staining protocol end-to-end, which can take weeks or even months for large samples, rendering protocol optimization for such samples to be inefficient. Here we present an in situ time-lapsed X-ray assisted staining procedure that opens the 'black box' of electron microscopy staining and allows observation of individual staining steps in real time. Using this novel method we measured the accumulation of heavy metals in large tissue samples immersed in different staining solutions. We show that the measured accumulation of osmium in fixed tissue obeys empirically a quadratic dependence between the incubation time and sample size. We found that potassium ferrocyanide, a classic reducing agent for osmium tetroxide, clears the tissue after osmium staining and that the tissue expands in osmium tetroxide solution, but shrinks in potassium ferrocyanide reduced osmium solution. X-ray assisted staining gave access to the in situ staining kinetics and allowed us to develop a diffusion-reaction-advection model that accurately simulates the measured accumulation of osmium in tissue. These are first steps towards in silico staining experiments and simulation-guided optimization of staining protocols for large samples. Hence, X-ray assisted staining will be a useful tool for the development of reliable staining procedures for large samples such as entire brains of mice, monkeys or humans.

Data availability

The code to analyze the X-ray projection images and to model the accumulation of heavy metals can be found on https://github.com/adwanner/XrayAssistedStaining. All X-ray data is available for download on https://www.ebi.ac.uk/empiar/ with dataset ID EMPIAR-10782.

Article and author information

Author details

  1. Sebastian Ströh

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8128-2617
  2. Eric W Hammerschmith

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  3. David W Tank

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    David W Tank, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9423-4267
  4. H Sebastian Seung

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    H Sebastian Seung, is an inventor of US Patent Application 16/681,028..
  5. Adrian Andreas Wanner

    Paul Scherrer Institute, Villigen, Switzerland
    For correspondence
    adrian.wanner@psi.ch
    Competing interests
    Adrian Andreas Wanner, is an inventor of US Patent Application 16/681,028..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5864-8577

Funding

CV Starr Fellowship in Neuroscience by the Princeton University

  • Adrian Andreas Wanner

National Institutes of Health (NS104648)

  • David W Tank
  • H Sebastian Seung

National Institutes of Health (1R01EY027036)

  • H Sebastian Seung

National Institutes of Health (U01NS090562)

  • H Sebastian Seung

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal use procedures were approved by the Princeton University Institutional Animal Care and Use Committee (protocol number 2000) and carried out in accordance with National Institutes of Health standards (AAALAC International Institutional Number: Unit #1001, PHS assurance ID D16-00273).

Copyright

© 2022, Ströh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,229
    views
  • 198
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sebastian Ströh
  2. Eric W Hammerschmith
  3. David W Tank
  4. H Sebastian Seung
  5. Adrian Andreas Wanner
(2022)
In situ X-ray assisted electron microscopy staining for large biological samples
eLife 11:e72147.
https://doi.org/10.7554/eLife.72147

Share this article

https://doi.org/10.7554/eLife.72147

Further reading

    1. Neuroscience
    Paul I Jaffe, Gustavo X Santiago-Reyes ... Russell A Poldrack
    Research Article

    Evidence accumulation models (EAMs) are the dominant framework for modeling response time (RT) data from speeded decision-making tasks. While providing a good quantitative description of RT data in terms of abstract perceptual representations, EAMs do not explain how the visual system extracts these representations in the first place. To address this limitation, we introduce the visual accumulator model (VAM), in which convolutional neural network models of visual processing and traditional EAMs are jointly fitted to trial-level RTs and raw (pixel-space) visual stimuli from individual subjects in a unified Bayesian framework. Models fitted to large-scale cognitive training data from a stylized flanker task captured individual differences in congruency effects, RTs, and accuracy. We find evidence that the selection of task-relevant information occurs through the orthogonalization of relevant and irrelevant representations, demonstrating how our framework can be used to relate visual representations to behavioral outputs. Together, our work provides a probabilistic framework for both constraining neural network models of vision with behavioral data and studying how the visual system extracts representations that guide decisions.

    1. Neuroscience
    Aneri Soni, Michael J Frank
    Research Article

    How and why is working memory (WM) capacity limited? Traditional cognitive accounts focus either on limitations on the number or items that can be stored (slots models), or loss of precision with increasing load (resource models). Here, we show that a neural network model of prefrontal cortex and basal ganglia can learn to reuse the same prefrontal populations to store multiple items, leading to resource-like constraints within a slot-like system, and inducing a trade-off between quantity and precision of information. Such ‘chunking’ strategies are adapted as a function of reinforcement learning and WM task demands, mimicking human performance and normative models. Moreover, adaptive performance requires a dynamic range of dopaminergic signals to adjust striatal gating policies, providing a new interpretation of WM difficulties in patient populations such as Parkinson’s disease, ADHD, and schizophrenia. These simulations also suggest a computational rather than anatomical limit to WM capacity.