Differences in local immune cell landscape between Q fever and atherosclerotic abdominal aortic aneurysms identified by multiplex immunohistochemistry

  1. Kimberley RG Cortenbach
  2. Alexander HJ Staal
  3. Teske Schoffelen
  4. Mark AJ Gorris
  5. Lieke L Van der Woude
  6. Anne FM Jansen
  7. Paul Poyck
  8. Robert Jan Van Suylen
  9. Peter C Wever
  10. Chantal P Bleeker-Rovers
  11. Mangala Srinivas
  12. Konnie M Hebeda
  13. Marcel van Deuren
  14. Jos W Van der Meer
  15. Jolanda M De Vries
  16. Roland RJ Van Kimmenade  Is a corresponding author
  1. Radboud Institute for Molecular Life Sciences, Netherlands
  2. Radboud University Medical Centre, Netherlands
  3. Jeroen Bosch Ziekenhuis, Netherlands
  4. Radboud University Medical Center, Netherlands

Abstract

Background: Chronic Q fever is a zoonosis caused by the bacterium Coxiella burnetii which can manifest as infection of an abdominal aortic aneurysm (AAA). Antibiotic therapy often fails, resulting in severe morbidity and high mortality. Whereas previous studies have focused on inflammatory processes in blood, the aim of this study was to investigate local inflammation in aortic tissue.

Methods: Multiplex immunohistochemistry was used to investigate local inflammation in Q fever AAAs compared to atherosclerotic AAAs in aorta tissue specimen. Two six-plex panels were used to study both the innate and adaptive immune system.

Results: Q fever AAAs and atherosclerotic AAAs contained similar numbers of CD68+ macrophages and CD3+ T cells. However, in Q fever AAAs the number of CD68+CD206+ M2 macrophages was increased, while expression of GM-CSF was decreased compared to atherosclerotic AAAs. Furthermore, Q fever AAAs showed an increase in both the number of CD8+ cytotoxic T cells and CD3+CD8-FoxP3+ regulatory T cells. Lastly, Q fever AAAs did not contain any well-defined granulomas.

Conclusions: These findings demonstrate that despite the presence of pro-i is associated with an immune suppressed micro environment.

Funding: This work was supported by SCAN consortium: European Research Area - CardioVascualar Diseases (ERA-CVD) grant [JTC2017-044] and TTW-NWO open technology grant [STW-14716].

Data availability

All data generated or analyzed during this study are included in the manuscript and uploaded to Dryad (http://dx.doi.org/10.5061/dryad.bzkh189b4).Figure 3 - Source data 3; Figure 5 - Source data 5; Figure 6 - Source figure 6; Figure 7 - Source figure 7 contain numerical data used to generate the figures.

The following data sets were generated
    1. Cortenbach KR
    (2021) Vascular Q fever inflammation
    Dryad Digital Repository, doi:10.5061/dryad.bzkh189b4.

Article and author information

Author details

  1. Kimberley RG Cortenbach

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2717-5527
  2. Alexander HJ Staal

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  3. Teske Schoffelen

    Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  4. Mark AJ Gorris

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  5. Lieke L Van der Woude

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  6. Anne FM Jansen

    Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  7. Paul Poyck

    Department of Surgery, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  8. Robert Jan Van Suylen

    Department of Pathology, Jeroen Bosch Ziekenhuis, 's Hertogenbosch, Netherlands
    Competing interests
    No competing interests declared.
  9. Peter C Wever

    Department of Medical Microbiology and Infection Control, Jeroen Bosch Ziekenhuis, 's Hertogenbosch, Netherlands
    Competing interests
    No competing interests declared.
  10. Chantal P Bleeker-Rovers

    Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  11. Mangala Srinivas

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  12. Konnie M Hebeda

    Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4181-3302
  13. Marcel van Deuren

    Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  14. Jos W Van der Meer

    Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    Jos W Van der Meer, Senior editor, eLife.
  15. Jolanda M De Vries

    Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  16. Roland RJ Van Kimmenade

    Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
    For correspondence
    Roland.vanKimmenade@radboudumc.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8207-8906

Funding

European Research Area - Cardiovascular Diseases (JTC2017-044)

  • Kimberley RG Cortenbach

TTW-NWO Open Technology (STW-14716)

  • Alexander HJ Staal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The medical ethics committees of the institutions approved the study, in line with the principlesoutlined in the Declaration of Helsinki (Radboudumc: 2017-3196; Jeroen Bosch Hospital:2019.05.02.01).

Copyright

© 2022, Cortenbach et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 597
    views
  • 95
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kimberley RG Cortenbach
  2. Alexander HJ Staal
  3. Teske Schoffelen
  4. Mark AJ Gorris
  5. Lieke L Van der Woude
  6. Anne FM Jansen
  7. Paul Poyck
  8. Robert Jan Van Suylen
  9. Peter C Wever
  10. Chantal P Bleeker-Rovers
  11. Mangala Srinivas
  12. Konnie M Hebeda
  13. Marcel van Deuren
  14. Jos W Van der Meer
  15. Jolanda M De Vries
  16. Roland RJ Van Kimmenade
(2022)
Differences in local immune cell landscape between Q fever and atherosclerotic abdominal aortic aneurysms identified by multiplex immunohistochemistry
eLife 11:e72486.
https://doi.org/10.7554/eLife.72486

Share this article

https://doi.org/10.7554/eLife.72486

Further reading

    1. Medicine
    Gabriel O Heckerman, Eileen Tzng ... Adrienne Mueller
    Research Article

    Background: Several fields have described low reproducibility of scientific research and poor accessibility in research reporting practices. Although previous reports have investigated accessible reporting practices that lead to reproducible research in other fields, to date, no study has explored the extent of accessible and reproducible research practices in cardiovascular science literature.

    Methods: To study accessibility and reproducibility in cardiovascular research reporting, we screened 639 randomly selected articles published in 2019 in three top cardiovascular science publications: Circulation, the European Heart Journal, and the Journal of the American College of Cardiology (JACC). Of those 639 articles, 393 were empirical research articles. We screened each paper for accessible and reproducible research practices using a set of accessibility criteria including protocol, materials, data, and analysis script availability, as well as accessibility of the publication itself. We also quantified the consistency of open research practices within and across cardiovascular study types and journal formats.

    Results: We identified that fewer than 2% of cardiovascular research publications provide sufficient resources (materials, methods, data, and analysis scripts) to fully reproduce their studies. Of the 639 articles screened, 393 were empirical research studies for which reproducibility could be assessed using our protocol, as opposed to commentaries or reviews. After calculating an accessibility score as a measure of the extent to which an article makes its resources available, we also showed that the level of accessibility varies across study types with a score of 0.08 for Case Studies or Case Series and 0.39 for Clinical Trials (p = 5.500E-5) and across journals (0.19 through 0.34, p = 1.230E-2). We further showed that there are significant differences in which study types share which resources.

    Conclusion: Although the degree to which reproducible reporting practices are present in publications varies significantly across journals and study types, current cardiovascular science reports frequently do not provide sufficient materials, protocols, data, or analysis information to reproduce a study. In the future, having higher standards of accessibility mandated by either journals or funding bodies will help increase the reproducibility of cardiovascular research.

    Funding: Authors Gabriel Heckerman, Arely Campos-Melendez, and Chisomaga Ekwueme were supported by an NIH R25 grant from the National Heart, Lung and Blood Institute (R25HL147666). Eileen Tzng was supported by an AHA Institutional Training Award fellowship (18UFEL33960207).

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).