Using positional information to provide context for biological image analysis with MorphoGraphX 2.0

  1. Sören Strauss
  2. Adam Runions
  3. Brendan Lane
  4. Dennis Eschweiler
  5. Namrata Bajpai
  6. Nicola Trozzi
  7. Anne-Lise Routier-Kierzkowska
  8. Saiko Yoshida
  9. Sylvia Rodrigues da Silveira
  10. Athul Vijayan
  11. Rachele Tofanelli
  12. Mateusz Majda
  13. Emillie Echevin
  14. Constance Le Gloanec
  15. Hana Bertrand-Rakusova
  16. Milad Adibi
  17. Kay Schneitz
  18. George Bassel
  19. Daniel Kierzkowski
  20. Johannes Stegmaier
  21. Miltos Tsiantis
  22. Richard S Smith  Is a corresponding author
  1. Max Planck Institute for Plant Breeding Research, Germany
  2. John Innes Centre, United Kingdom
  3. RWTH Aachen University, Germany
  4. Université de Montréal, Canada
  5. University of Montreal, Canada
  6. Technical University of Munich, Germany
  7. University of Warwick, United Kingdom

Abstract

Positional information is a central concept in developmental biology. In developing organs, positional information can be idealized as a local coordinate system that arises from morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism for the integration of the molecular networks operating in individual cells into the spatially-coordinated multicellular responses necessary for the organization of emergent forms. Understanding how positional cues guide morphogenesis requires the quantification of gene expression and growth dynamics in the context of their underlying coordinate systems. Here we present recent advances in the MorphoGraphX software (Barbier de Reuille et al., 2015)⁠ that implement a generalized framework to annotate developing organs with local coordinate systems. These coordinate systems introduce an organ-centric spatial context to microscopy data, allowing gene expression and growth to be quantified and compared in the context of the positional information thought to control them.

Data availability

Datasets and software are available at www.MorphoGraphX.org and Dryad

The following data sets were generated

Article and author information

Author details

  1. Sören Strauss

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam Runions

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7758-7423
  3. Brendan Lane

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis Eschweiler

    Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Namrata Bajpai

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicola Trozzi

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3951-6533
  7. Anne-Lise Routier-Kierzkowska

    Department of Biological Sciences, Université de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0383-0811
  8. Saiko Yoshida

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvia Rodrigues da Silveira

    Department of Biological Sciences, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Athul Vijayan

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1837-6359
  11. Rachele Tofanelli

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5196-1122
  12. Mateusz Majda

    John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Emillie Echevin

    Department of Biological Sciences, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Constance Le Gloanec

    Department of Biological Sciences, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7959-6307
  15. Hana Bertrand-Rakusova

    Department of Biological Sciences, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Milad Adibi

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Kay Schneitz

    School of Life Sciences, Technical University of Munich, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6688-0539
  18. George Bassel

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Daniel Kierzkowski

    Department of Biological Sciences, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1947-8691
  20. Johannes Stegmaier

    Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4072-3759
  21. Miltos Tsiantis

    Max Planck Institute for Plant Breeding Research, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  22. Richard S Smith

    John Innes Centre, Norwich, United Kingdom
    For correspondence
    Richard.Smith@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9220-0787

Funding

Deutsche Forschungsgemeinschaft (Forschunggruppe 2581)

  • Kay Schneitz
  • Miltos Tsiantis
  • Richard S Smith

Human Frontiers Science Program (RGP0002/2020)

  • George Bassel

Max Planck Society (Core grant)

  • Miltos Tsiantis

Fonds Nature et Technologies (282285)

  • Anne-Lise Routier-Kierzkowska
  • Daniel Kierzkowski

Deutsche Forschungsgemeinschaft (ERA-CAPS V-Morph)

  • Richard S Smith

Biotechnology and Biological Sciences Research Council (ISP to John Innes Centre)

  • Richard S Smith

Bundesministerium für Bildung und Forschung (031A494 & 031A492)

  • Richard S Smith

Deutsche Forschungsgemeinschaft (STE2802/2-1)

  • Dennis Eschweiler

New Frontiers in Research Fund (2018-00953)

  • Anne-Lise Routier-Kierzkowska
  • Daniel Kierzkowski

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-04897)

  • Daniel Kierzkowski

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05762)

  • Anne-Lise Routier-Kierzkowska

Leverhulme Trust (RPG-2019-267)

  • George Bassel

Biotechnology and Biological Sciences Research Council (BB/S002804/1)

  • George Bassel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Strauss et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,235
    views
  • 647
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sören Strauss
  2. Adam Runions
  3. Brendan Lane
  4. Dennis Eschweiler
  5. Namrata Bajpai
  6. Nicola Trozzi
  7. Anne-Lise Routier-Kierzkowska
  8. Saiko Yoshida
  9. Sylvia Rodrigues da Silveira
  10. Athul Vijayan
  11. Rachele Tofanelli
  12. Mateusz Majda
  13. Emillie Echevin
  14. Constance Le Gloanec
  15. Hana Bertrand-Rakusova
  16. Milad Adibi
  17. Kay Schneitz
  18. George Bassel
  19. Daniel Kierzkowski
  20. Johannes Stegmaier
  21. Miltos Tsiantis
  22. Richard S Smith
(2022)
Using positional information to provide context for biological image analysis with MorphoGraphX 2.0
eLife 11:e72601.
https://doi.org/10.7554/eLife.72601

Share this article

https://doi.org/10.7554/eLife.72601

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.