Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial - BCPP/ Ya Tsie trial
Abstract
Background: Mathematical models predict that community-wide access to HIV testing-and-treatment can rapidly and substantially reduce new HIV infections. Yet several large universal test-and-treat HIV prevention trials in high-prevalence epidemics demonstrated variable reduction in population-level incidence.
Methods: To elucidate patterns of HIV spread in universal test-and-treat trials we quantified the contribution of geographic-location, gender, age and randomized-HIV-intervention to HIV transmissions in the 30-community Ya Tsie trial in Botswana. We sequenced HIV viral whole genomes from 5,114 trial participants among the 30 trial communities.
Results: Deep-sequence phylogenetic analysis revealed that most inferred HIV transmissions within the trial occurred within the same or between neighboring communities, and between similarly-aged partners. Transmissions into intervention communities from control communities were more common than the reverse post-baseline (30% [12.2 - 56.7] versus 3% [0.1 - 27.3]) than at baseline (7% [1.5 - 25.3] versus 5% [0.9 - 22.9]) compatible with a benefit from treatment-as-prevention.
Conclusion: Our findings suggest that population mobility patterns are fundamental to HIV transmission dynamics and to the impact of HIV control strategies.
Funding: This study was supported by the National Institute of General Medical Sciences (U54GM088558); the Fogarty International Center (FIC) of the U.S. National Institutes of Health (D43 TW009610); and the President’s Emergency Plan for AIDS Relief through the Centers for Disease Control and Prevention (CDC) (Cooperative agreements U01 GH000447 and U2G GH001911).
Data availability
All relevant data are within the paper, figures and tables. HIV-1 viral whole genome consensus sequences are provided as a Dryad dataset (https://doi.org/10.5061/dryad.0zpc86706). HIV-1 reads are available on reasonable request through a concept sheet proposal to the PANGEA consortium. Contact details are provided on the consortium website (www.pangea-hiv.org).Code availability: Algorithms to estimate HIV transmission flows within and between population groups accounting for sampling variability and corresponding confidence intervals have been implemented as an R package, bumblebee that will be made available at the following URL: https://magosil86.github.io/bumblebee . A step-by-step tutorial on how to estimate HIV transmission flows with bumblebee and accompanying example datasets can be accessed at: https://github.com/magosil86/bumblebee/blob/master/vignettes/bumblebee-estimate-transmission-flows-and-ci-tutotial.md .
-
Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial - BCPP/ Ya Tsie trialDryad Digital Repository, doi:10.5061/dryad.0zpc86706.
Article and author information
Author details
Funding
Fogarty International Center (D43 TW009610)
- Lerato E Magosi
Centers for Disease Control and Prevention (U01 GH000447 and U2G GH001911)
- Lerato E Magosi
- Janet Moore
- Pam Bachanas
- Refeletswe Lebelonyane
- Molly Pretorius Holme
- Shahin Lockman
- Myron (Max) Essex
National Institutes of Health
- Christophe Fraser
- Marc Lipsitch
Bill and Melinda Gates Foundation
- Christophe Fraser
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The BCPP study was approved by the Botswana Health Research and Development Committee and the institutional review board of the Centers for Disease Control and Prevention; and was monitored by a data and safety monitoring board and Westat. Written informed consent for enrollment in the study and viral HIV genotyping was obtained from all participants.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,058
- views
-
- 170
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
The use of siblings to infer the factors influencing complex traits has been a cornerstone of quantitative genetics. Here, we utilise siblings for a novel application: the inference of genetic architecture, specifically that relating to individuals with extreme trait values (e.g. in the top 1%). Inferring the genetic architecture most relevant to this group of individuals is important because they are at the greatest risk of disease and may be more likely to harbour rare variants of large effect due to natural selection. We develop a theoretical framework that derives expected distributions of sibling trait values based on an index sibling’s trait value, estimated trait heritability, and null assumptions that include infinitesimal genetic effects and environmental factors that are either controlled for or have combined Gaussian effects. This framework is then used to develop statistical tests powered to distinguish between trait tails characterised by common polygenic architecture from those that include substantial enrichments of de novo or rare variant (Mendelian) architecture. We apply our tests to UK Biobank data here, although we note that they can be used to infer genetic architecture in any cohort or health registry that includes siblings and their trait values, since these tests do not use genetic data. We describe how our approach has the potential to help disentangle the genetic and environmental causes of extreme trait values, and to improve the design and power of future sequencing studies to detect rare variants.
-
- Biochemistry and Chemical Biology
- Genetics and Genomics
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.