Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling

Abstract

Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96h and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.

Data availability

All code for data analysis and model simulations is available on github.com/idse/PGCsscRNA-seq data have been deposited in GEO under accession number GSE182057.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kyoung Jo

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seth Teague

    Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bohan Chen

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9781-2982
  4. Hina Aftab Khan

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Freeburne

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0344-577X
  6. Hunter Li

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bolin Li

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ran Ran

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason R Spence

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7869-3992
  10. Idse Heemskerk

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    iheemske@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-7712

Funding

Medical School, University of Michigan (startup)

  • Kyoung Jo
  • Seth Teague
  • Bohan Chen
  • Hina Aftab Khan
  • Emily Freeburne
  • Hunter Li
  • Bolin Li
  • Ran Ran
  • Idse Heemskerk

ETH Zürich Foundation (Branco Weiss Fellowship)

  • Hina Aftab Khan
  • Idse Heemskerk

National Institute of General Medical Sciences (R35 GM138346)

  • Seth Teague
  • Bohan Chen

Medical School, University of Michigan (Pioneer Fellowship)

  • Kyoung Jo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Jo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,301
    views
  • 512
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyoung Jo
  2. Seth Teague
  3. Bohan Chen
  4. Hina Aftab Khan
  5. Emily Freeburne
  6. Hunter Li
  7. Bolin Li
  8. Ran Ran
  9. Jason R Spence
  10. Idse Heemskerk
(2022)
Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling
eLife 11:e72811.
https://doi.org/10.7554/eLife.72811

Share this article

https://doi.org/10.7554/eLife.72811

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.