Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants

  1. Richard J White
  2. Eirinn Mackay
  3. Stephen W Wilson
  4. Elisabeth M Busch-Nentwich  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University College London, United Kingdom

Abstract

In model organisms, RNA sequencing is frequently used to assess the effect of genetic mutations on cellular and developmental processes. Typically, animals heterozygous for a mutation are crossed to produce offspring with different genotypes. Resultant embryos are grouped by genotype to compare homozygous mutant embryos to heterozygous and wild-type siblings. Genes that are differentially expressed between the groups are assumed to reveal insights into the pathways affected by the mutation. Here we show that in zebrafish, differentially expressed genes are often overrepresented on the same chromosome as the mutation due to different levels of expression of alleles from different genetic backgrounds. Using an incross of haplotype-resolved wild-type fish, we found evidence of widespread allele-specific expression, which appears as differential expression when comparing embryos homozygous for a region of the genome to their siblings. When analysing mutant transcriptomes, this means that the differential expression of genes on the same chromosome as a mutation of interest may not be caused by that mutation. Typically, the genomic location of a differentially expressed gene is not considered when interpreting its importance with respect to the phenotype. This could lead to pathways being erroneously implicated or overlooked due to the noise of spurious differentially expressed genes on the same chromosome as the mutation. These observations have implications for the interpretation of RNA-seq experiments involving outbred animals and non-inbred model organisms.

Data availability

Sequencing data have been deposited in ENA under the accessions shown in the Materials and Methods. Differentially expressed gene lists for all the experiments are available at doi.org/10.6084/m9.figshare.15082239.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Richard J White

    Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Eirinn Mackay

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen W Wilson

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8557-5940
  4. Elisabeth M Busch-Nentwich

    Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    e.busch-nentwich@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6450-744X

Funding

Medical Research Council (MR/L003775/1)

  • Stephen W Wilson

Medical Research Council (MR/T020164/1)

  • Stephen W Wilson

Wellcome Trust (095722/Z/11/Z)

  • Stephen W Wilson

Wellcome Trust (206194)

  • Richard J White
  • Elisabeth M Busch-Nentwich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,109
    views
  • 229
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard J White
  2. Eirinn Mackay
  3. Stephen W Wilson
  4. Elisabeth M Busch-Nentwich
(2022)
Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants
eLife 11:e72825.
https://doi.org/10.7554/eLife.72825

Share this article

https://doi.org/10.7554/eLife.72825

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.