Abstract

Background: Deep Brain Stimulation (DBS) electrode implant trajectories are stereotactically defined using preoperative neuroimaging. To validate the correct trajectory, microelectrode recordings (MER) or local field potential recordings (LFP) can be used to extend neuroanatomical information (defined by magnetic resonance imaging) with neurophysiological activity patterns recorded from micro- and macroelectrodes probing the surgical target site. Currently, these two sources of information (imaging vs. electrophysiology) are analyzed separately, while means to fuse both data streams have not been introduced.

Methods: Here we present a tool that integrates resources from stereotactic planning, neuroimaging, MER and high-resolution atlas data to create a real-time visualization of the implant trajectory. We validate the tool based on a retrospective cohort of DBS patients (𝑁 = 52) offline and present single use cases of the real-time platform. Results: We establish an open-source software tool for multimodal data visualization and analysis during DBS surgery. We show a general correspondence between features derived from neuroimaging and electrophysiological recordings and present examples that demonstrate the functionality of the tool.

Conclusions: This novel software platform for multimodal data visualization and analysis bears translational potential to improve accuracy of DBS surgery. The toolbox is made openly available and is extendable to integrate with additional software packages.

Funding: Deutsche Forschungsgesellschaft (410169619, 424778381), Deutsches Zentrum für Luftund Raumfahrt (DynaSti), National Institutes of Health (2R01 MH113929), Foundation for OCD Research (FFOR).

Data availability

All processed data and code needed to reproducemain findings of the study aremade openly available in de-identified form (see figure legends). This can be found in https://github.com/simonoxen/Lead-OR_Supplementary and, when file size allowed, attached to the publication. Due to data privacy regulations of patient data, raw data cannot be publicly shared. Upon reasonable request to the corresponding author, data can be made available after setting up a data sharing agreement between our host institution (Charité - Universitätsmedizin Berlin) and the inquiring party. All code used to analyze the dataset is available within Lead-DBS /-OR software (https://github.com/netstim/leaddbs; https://github.com/netstim/SlicerNetstim)

Article and author information

Author details

  1. Simon Oxenford

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    For correspondence
    simon.oxenford@charite.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2989-3861
  2. Jan Roediger

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2814-3532
  3. Clemens Neudorfer

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  4. Luka Milosevic

    Krembil Brain Institute, University Health Network, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4051-5397
  5. Christopher Güttler

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  6. Philipp Spindler

    Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  7. Peter Vajkoczy

    Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Wolf-Julian Neumann

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6758-9708
  9. Andrea A Kühn

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    Andrea A Kühn, Reports personal fees from Medtronic, Boston Scientific, Abbott, Teva, Ipsen and Stadapharm, all outside the submitted work..
  10. Andreas Horn

    Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    Andreas Horn, Reports lecture fee for Boston Scientific outside the submitted work..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0695-6025

Funding

Deutsche Forschungsgemeinschaft (Emmy Noether Stipend 410169619)

  • Andreas Horn

Deutsche Forschungsgemeinschaft (Project ID 424778371)

  • Andreas Horn

Deutsche Forschungsgemeinschaft (Project ID 424778371)

  • Wolf-Julian Neumann

Bundesministerium für Bildung und Forschung (Project iDBS FKZ01GQ1802)

  • Wolf-Julian Neumann

Deutsches Zentrum für Luft- und Raumfahrt (DynaSti grant within the EU Joint Programme Neurodegenerative Disease Research,JPND)

  • Andreas Horn

National Institutes of Health (2R01 MH113929)

  • Andreas Horn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The collection and analysis of all patient data used for this article was approved by the Local Ethics committee of Charité - Universitätsmedizin Berlin (master vote EA2/145/21). All data were analyzed retrospectively and obtained in deidentified from Medical Records of Charité. Hence, following local guidelines in Berlin/Brandenburg as well as NIH guidelines for human subjects research, no explicit patient consent to analyze and publish was obtained/necessary.

Copyright

© 2022, Oxenford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,573
    views
  • 436
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Oxenford
  2. Jan Roediger
  3. Clemens Neudorfer
  4. Luka Milosevic
  5. Christopher Güttler
  6. Philipp Spindler
  7. Peter Vajkoczy
  8. Wolf-Julian Neumann
  9. Andrea A Kühn
  10. Andreas Horn
(2022)
Lead-OR: a multimodal platform for deep brain stimulation surgery
eLife 11:e72929.
https://doi.org/10.7554/eLife.72929

Share this article

https://doi.org/10.7554/eLife.72929

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.