Abstract

During early vertebrate development, signals from a special region of the embryo, the organizer, can re-direct the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here we undertake a comprehensive analysis, in very fine time-course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node). Using transcriptomics and epigenomics we generate a Gene Regulatory Network comprising 175 transcriptional regulators and 5,614 predicted interactions between them, with fine temporal dynamics from initial exposure to the signals to expression of mature neural plate markers. Using in situ hybridization, single-cell RNA-sequencing and reporter assays we show that the gene regulatory hierarchy of responses to a grafted organizer closely resembles the events of normal neural plate development. The study is accompanied by an extensive resource, including information about conservation of the predicted enhancers in other vertebrates.

Data availability

Full scRNAseq software and pipelines deposited in https://github.com/alexthiery/10x_neural_tubeFull software/scripts/pipelines for GRN construction deposited inhttps://github.com/grace-hc-lu/NI_networkFull sequencing datasets in ArrayExpress under E-MTAB-10409, E-MTAB-10420, E-MTAB-10424, E-MTAB-10426, and E-MTAB-10408.Expression patterns submitted to GEISHA (http://geisha.arizona.edu/geisha/)Code for DREiVe: https://github.com/grace-hc-lu/DREiVe

Article and author information

Author details

  1. Katherine E Trevers

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hui-Chun Lu

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Youwen Yang

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre P Thiery

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna C Strobl

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Claire Anderson

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Božena Pálinkášová

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nidia MM de Oliveira

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Irene M de Almeida

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Mohsin AF Khan

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Natalia Moncaut

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas M Luscombe

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Leslie Dale

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrea Streit

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7664-7917
  15. Claudio D Stern

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    c.stern@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9907-889X

Funding

National Institute of Mental Health (R01 MH60156)

  • Claudio D Stern

Wellcome Trust (FC010110)

  • Nicholas M Luscombe

Medical Research Council (G0400559)

  • Claudio D Stern

Wellcome Trust (063988)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/R003432/1)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/K007742/1)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/K006207/1)

  • Andrea Streit

Francis Crick Institute

  • Nicholas M Luscombe

Cancer Research UK (FC010110)

  • Nicholas M Luscombe

Medical Research Council (FC010110)

  • Nicholas M Luscombe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Trevers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,445
    views
  • 465
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine E Trevers
  2. Hui-Chun Lu
  3. Youwen Yang
  4. Alexandre P Thiery
  5. Anna C Strobl
  6. Claire Anderson
  7. Božena Pálinkášová
  8. Nidia MM de Oliveira
  9. Irene M de Almeida
  10. Mohsin AF Khan
  11. Natalia Moncaut
  12. Nicholas M Luscombe
  13. Leslie Dale
  14. Andrea Streit
  15. Claudio D Stern
(2023)
A gene regulatory network for neural induction
eLife 12:e73189.
https://doi.org/10.7554/eLife.73189

Share this article

https://doi.org/10.7554/eLife.73189

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.

    1. Developmental Biology
    Jing Lu, Hao Xu ... Kai Lei
    Tools and Resources

    The intricate coordination of the neural network in planarian growth and regeneration has remained largely unrevealed, partly due to the challenges of imaging the CNS in three dimensions (3D) with high resolution and within a reasonable timeframe. To address this gap in systematic imaging of the CNS in planarians, we adopted high-resolution, nanoscale imaging by combining tissue expansion and tiling light-sheet microscopy, achieving up to fourfold linear expansion. Using an automatic 3D cell segmentation pipeline, we quantitatively profiled neurons and muscle fibers at the single-cell level in over 400 wild-type planarians during homeostasis and regeneration. We validated previous observations of neuronal cell number changes and muscle fiber distribution. We found that the increase in neuron cell number tends to lag behind the rapid expansion of somatic cells during the later phase of homeostasis. By imaging the planarian with up to 120 nm resolution, we also observed distinct muscle distribution patterns at the anterior and posterior poles. Furthermore, we investigated the effects of β-catenin-1 RNAi on muscle fiber distribution at the posterior pole, consistent with changes in anterior-posterior polarity. The glial cells were observed to be close in contact with dorsal-ventral muscle fibers. Finally, we observed disruptions in neural-muscular networks in inr-1 RNAi planarians. These findings provide insights into the detailed structure and potential functions of the neural-muscular system in planarians and highlight the accessibility of our imaging tool in unraveling the biological functions underlying their diverse phenotypes and behaviors.