Abstract

During early vertebrate development, signals from a special region of the embryo, the organizer, can re-direct the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here we undertake a comprehensive analysis, in very fine time-course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node). Using transcriptomics and epigenomics we generate a Gene Regulatory Network comprising 175 transcriptional regulators and 5,614 predicted interactions between them, with fine temporal dynamics from initial exposure to the signals to expression of mature neural plate markers. Using in situ hybridization, single-cell RNA-sequencing and reporter assays we show that the gene regulatory hierarchy of responses to a grafted organizer closely resembles the events of normal neural plate development. The study is accompanied by an extensive resource, including information about conservation of the predicted enhancers in other vertebrates.

Data availability

Full scRNAseq software and pipelines deposited in https://github.com/alexthiery/10x_neural_tubeFull software/scripts/pipelines for GRN construction deposited inhttps://github.com/grace-hc-lu/NI_networkFull sequencing datasets in ArrayExpress under E-MTAB-10409, E-MTAB-10420, E-MTAB-10424, E-MTAB-10426, and E-MTAB-10408.Expression patterns submitted to GEISHA (http://geisha.arizona.edu/geisha/)Code for DREiVe: https://github.com/grace-hc-lu/DREiVe

Article and author information

Author details

  1. Katherine E Trevers

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Hui-Chun Lu

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Youwen Yang

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre P Thiery

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna C Strobl

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Claire Anderson

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Božena Pálinkášová

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Nidia MM de Oliveira

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Irene M de Almeida

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Mohsin AF Khan

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Natalia Moncaut

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicholas M Luscombe

    The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Leslie Dale

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Andrea Streit

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7664-7917
  15. Claudio D Stern

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    c.stern@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9907-889X

Funding

National Institute of Mental Health (R01 MH60156)

  • Claudio D Stern

Wellcome Trust (FC010110)

  • Nicholas M Luscombe

Medical Research Council (G0400559)

  • Claudio D Stern

Wellcome Trust (063988)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/R003432/1)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/K007742/1)

  • Claudio D Stern

Biotechnology and Biological Sciences Research Council (BB/K006207/1)

  • Andrea Streit

Francis Crick Institute

  • Nicholas M Luscombe

Cancer Research UK (FC010110)

  • Nicholas M Luscombe

Medical Research Council (FC010110)

  • Nicholas M Luscombe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Trevers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,445
    views
  • 465
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katherine E Trevers
  2. Hui-Chun Lu
  3. Youwen Yang
  4. Alexandre P Thiery
  5. Anna C Strobl
  6. Claire Anderson
  7. Božena Pálinkášová
  8. Nidia MM de Oliveira
  9. Irene M de Almeida
  10. Mohsin AF Khan
  11. Natalia Moncaut
  12. Nicholas M Luscombe
  13. Leslie Dale
  14. Andrea Streit
  15. Claudio D Stern
(2023)
A gene regulatory network for neural induction
eLife 12:e73189.
https://doi.org/10.7554/eLife.73189

Share this article

https://doi.org/10.7554/eLife.73189

Further reading

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.