Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response

  1. Xinfeng Li
  2. Fang Chen
  3. Xiaoyu Liu
  4. Jinfeng Xiao
  5. Binda T Andongma
  6. Qing Tang
  7. Xiaojian Cao
  8. Shan-Ho Chou
  9. Michael Y Galperin
  10. Jin He  Is a corresponding author
  1. Huazhong Agricultural University, China
  2. National Institutes of Health, United States

Abstract

Under starvation conditions, bacteria tend to slow down their translation rate by reducing rRNA synthesis, but the way they accomplish that may vary in different bacteria. In Mycobacterium species, transcription of rRNA is activated by the RNA polymerase (RNAP) accessory transcription factor CarD, which interacts directly with RNAP to stabilize the RNAP-promoter open complex formed on rRNA genes. The functions of CarD have been extensively studied, but the mechanisms that control its expression remain obscure. Here, we report that the level of CarD was tightly regulated when mycobacterial cells switched from nutrient-rich to nutrient-deprived conditions. At the translational level, an antisense RNA of carD (AscarD) was induced in a SigF-dependent manner to bind with carD mRNA and inhibit CarD translation, while at the post-translational level, the residual intracellular CarD was quickly degraded by the Clp protease. AscarD thus worked synergistically with Clp protease to decrease the CarD level to help mycobacterial cells cope with the nutritional stress. Altogether, our work elucidates the regulation mode of CarD and delineates a new mechanism for the mycobacterial starvation response, which is important for the adaptation and persistence of mycobacterial pathogens in the host environment.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1, 4, 5 and 6. These Source Data contain the numerical data used to generate the figures.

Article and author information

Author details

  1. Xinfeng Li

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Fang Chen

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1663-3737
  3. Xiaoyu Liu

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jinfeng Xiao

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Binda T Andongma

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Qing Tang

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaojian Cao

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Shan-Ho Chou

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Y Galperin

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2265-5572
  10. Jin He

    College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
    For correspondence
    hejin@mail.hzau.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1456-8284

Funding

National Natural Science Foundation of China (31770087)

  • Jin He

National Natural Science Foundation of China (31900057)

  • Qing Tang

National Natural Science Foundation of China (31970074)

  • Jin He

National Natural Science Foundation of China (32171424)

  • Jin He

China Postdoctoral Science Foundation (2019M662654)

  • Xinfeng Li

Intramural Research Program of the U.S. National Library of Medicine at the NIH

  • Michael Y Galperin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,800
    views
  • 286
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinfeng Li
  2. Fang Chen
  3. Xiaoyu Liu
  4. Jinfeng Xiao
  5. Binda T Andongma
  6. Qing Tang
  7. Xiaojian Cao
  8. Shan-Ho Chou
  9. Michael Y Galperin
  10. Jin He
(2022)
Clp protease and antisense RNA jointly regulate the global regulator CarD to mediate mycobacterial starvation response
eLife 11:e73347.
https://doi.org/10.7554/eLife.73347

Share this article

https://doi.org/10.7554/eLife.73347

Further reading

    1. Microbiology and Infectious Disease
    Ziyu Wen, Pingchao Li ... Caijun Sun
    Research Article

    The persistence of latent viral reservoirs remains the major obstacle to eradicating human immunodeficiency virus (HIV). We herein found that ICP34.5 can act as an antagonistic factor for the reactivation of HIV latency by herpes simplex virus type I (HSV-1), and thus recombinant HSV-1 with ICP34.5 deletion could more effectively reactivate HIV latency than its wild-type counterpart. Mechanistically, HSV-ΔICP34.5 promoted the phosphorylation of HSF1 by decreasing the recruitment of protein phosphatase 1 (PP1α), thus effectively binding to the HIV LTR to reactivate the latent reservoirs. In addition, HSV-ΔICP34.5 enhanced the phosphorylation of IKKα/β through the degradation of IκBα, leading to p65 accumulation in the nucleus to elicit NF-κB pathway-dependent reactivation of HIV latency. Then, we constructed the recombinant HSV-ΔICP34.5 expressing simian immunodeficiency virus (SIV) env, gag, or the fusion antigen sPD1-SIVgag as a therapeutic vaccine, aiming to achieve a functional cure by simultaneously reactivating viral latency and eliciting antigen-specific immune responses. Results showed that these constructs effectively elicited SIV-specific immune responses, reactivated SIV latency, and delayed viral rebound after the interruption of antiretroviral therapy (ART) in chronically SIV-infected rhesus macaques. Collectively, these findings provide insights into the rational design of HSV-vectored therapeutic strategies for pursuing an HIV functional cure.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.