Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter

  1. Evangelos Mourkas
  2. Koji Yahara
  3. Sion C Bayliss
  4. Jessica K Calland
  5. Håkan Johansson
  6. Leonardos Mageiros
  7. Zilia Y Muñoz-Ramirez
  8. Grant Futcher
  9. Guillaume Méric
  10. Matthew D Hitchings
  11. Santiago Sandoval-Motta
  12. Javier Torres
  13. Keith A Jolley
  14. Martin CJ Maiden
  15. Patrik Ellström
  16. Jonas Waldenström
  17. Ben Pascoe
  18. Samuel K Sheppard  Is a corresponding author
  1. University of Bath, United Kingdom
  2. National Institute of Infectious Diseases, Japan
  3. Linnaeus University, Sweden
  4. Instituto Mexicano del Seguro Social, Mexico
  5. Baker Heart and Diabetes Institute, Australia
  6. Swansea University, United Kingdom
  7. University of Oxford, United Kingdom
  8. Uppsala University, Sweden

Abstract

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter there are species with divergent ecologies, from rarely isolated single host specialists to multi-host generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterising these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analysing recipient and donor population ancestry among genomes from 30 Campylobacter species we show that cohabitation in the same host can lead to a 6-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.

Data availability

Genomes sequenced as part of other studies are archived on the Short Read Archive associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Additional genomes were also downloaded from NCBI [101] and pubMLST (http://pubmlst.org/campylobacter). Contiguous assemblies of all genome sequences compared are available at the public data repository Figshare (doi: 10.6084/m9.figshare.15061017) and individual project and accession numbers can be found in Supplementary Table 1.

Article and author information

Author details

  1. Evangelos Mourkas

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7411-4743
  2. Koji Yahara

    Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4289-1115
  3. Sion C Bayliss

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5997-2002
  4. Jessica K Calland

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Håkan Johansson

    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Leonardos Mageiros

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0846-522X
  7. Zilia Y Muñoz-Ramirez

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Grant Futcher

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Guillaume Méric

    Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthew D Hitchings

    Swansea University, Swansea, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Santiago Sandoval-Motta

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  12. Javier Torres

    Instituto Mexicano del Seguro Social, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  13. Keith A Jolley

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Martin CJ Maiden

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6321-5138
  15. Patrik Ellström

    Department of Medical Sciences, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  16. Jonas Waldenström

    Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  17. Ben Pascoe

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Samuel K Sheppard

    Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
    For correspondence
    s.k.sheppard@bath.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6901-3203

Funding

Medical Research Council (MR/M501608/1)

  • Samuel K Sheppard

Medical Research Council (MR/L015080/1)

  • Samuel K Sheppard

Wellcome Trust (088786/C/09/Z)

  • Samuel K Sheppard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Mourkas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,791
    views
  • 287
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evangelos Mourkas
  2. Koji Yahara
  3. Sion C Bayliss
  4. Jessica K Calland
  5. Håkan Johansson
  6. Leonardos Mageiros
  7. Zilia Y Muñoz-Ramirez
  8. Grant Futcher
  9. Guillaume Méric
  10. Matthew D Hitchings
  11. Santiago Sandoval-Motta
  12. Javier Torres
  13. Keith A Jolley
  14. Martin CJ Maiden
  15. Patrik Ellström
  16. Jonas Waldenström
  17. Ben Pascoe
  18. Samuel K Sheppard
(2022)
Host ecology regulates interspecies recombination in bacteria of the genus Campylobacter
eLife 11:e73552.
https://doi.org/10.7554/eLife.73552

Share this article

https://doi.org/10.7554/eLife.73552

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jia-Ying Su, Yun-Lin Wang ... Chien-Ling Lin
    Research Article

    Untranslated regions (UTRs) contain crucial regulatory elements for RNA stability, translation and localization, so their integrity is indispensable for gene expression. Approximately 3.7% of genetic variants associated with diseases occur in UTRs, yet a comprehensive understanding of UTR variant functions remains limited due to inefficient experimental and computational assessment methods. To systematically evaluate the effects of UTR variants on RNA stability, we established a massively parallel reporter assay on 6555 UTR variants reported in human disease databases. We examined the RNA degradation patterns mediated by the UTR library in two cell lines, and then applied LASSO regression to model the influential regulators of RNA stability. We found that UA dinucleotides and UA-rich motifs are the most prominent destabilizing element. Gain of UA dinucleotide outlined mutant UTRs with reduced stability. Studies on endogenous transcripts indicate that high UA-dinucleotide ratios in UTRs promote RNA degradation. Conversely, elevated GC content and protein binding on UA dinucleotides protect high-UA RNA from degradation. Further analysis reveals polarized roles of UA-dinucleotide-binding proteins in RNA protection and degradation. Furthermore, the UA-dinucleotide ratio of both UTRs is a common characteristic of genes in innate immune response pathways, implying a coordinated stability regulation through UTRs at the transcriptomic level. We also demonstrate that stability-altering UTRs are associated with changes in biobank-based health indices, underscoring the importance of precise UTR regulation for wellness. Our study highlights the importance of RNA stability regulation through UTR primary sequences, paving the way for further exploration of their implications in gene networks and precision medicine.

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.