A genome-wide functional genomics approach uncovers genetic determinants of immune phenotypes in type 1 diabetes

  1. Xiaojing Chu
  2. Anna WM Janssen
  3. Hans Koenen
  4. Linzhung Chang
  5. Xuehui He
  6. Irma Joosten
  7. Rinke Stienstra
  8. Yunus Kuijpers
  9. Cisca Wijmenga
  10. Cheng-Jian Xu
  11. Mihai G Netea
  12. Cees J Tack  Is a corresponding author
  13. Yang Li  Is a corresponding author
  1. University Medical Center Groningen, Netherlands
  2. Radboud University Nijmegen Medical Centre, Netherlands
  3. Helmholtz Centre for Infection Research, Germany
  4. University of Groningen, Netherlands

Abstract

Background: The large inter-individual variability in immune-cell cell composition and function determines immune responses in general and susceptibility to immune-mediated diseases in particular. While much has been learned about the genetic variants relevant for type 1 diabetes (T1D), the pathophysiological mechanisms through which these variations exert their effects remain unknown.

Methods: Blood samples were collected from 243 patients with T1D of Dutch descent. We applied genetic association analysis on > 200 immune cell traits and >100 cytokine production profiles in response to stimuli measured to identify genetic determinants of immune function, and compared the results obtained in T1D to healthy controls.

Results: Genetic variants that determine susceptibility to T1D significantly affect T cell composition. Specifically, the CCR5+ regulatory T cells associate with T1D through the CCR region, suggesting a shared genetic regulation. Genome-wide quantitative trait loci (QTL) mapping analysis of immune traits revealed 15 genetic loci that influence immune responses in T1D, including 12 that have never been reported in healthy population studies, implying a disease-specific genetic regulation.

Conclusion: This study provides new insights into the genetic factors that affect immunological responses in T1D.

Funding: This work was supported by an ERC starting grant (no. 948207) and a Radboud University Medical Centre Hypatia grant (2018) to Y.L. and an ERC advanced grant (no. 833247) and a Spinoza grant of the Netherlands Association for Scientific Research to M.G.N. C.T received funding from the Perspectief Biomarker Development Center Research Programme, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). AJ was funded by a grant from the European Foundation for the Study of Diabetes (EFSD/AZ Macrovascular Programme 2015). X.C was supported by the China Scholarship Council (201706040081).

Data availability

All the raw data on immune phenotypes and summary statistics generated directly from genetic data needed to precisely reproduce published results are deposited in Dryad (https://doi.org/10.5061/dryad.4f4qrfjd0). Custom scripts for generating summary statistics and all results are deposited in GitHub (https://github.com/Chuxj/Gf_of_ip_in_T1D). Individual genetic data and other privacy-sensitive individual information are not publicly available because they contain information that could compromise research participant privacy. For data access, please contact Prof. Cees Tack (Cees.Tack@radboudumc.nl). This original data is available for qualified researchers, i.e. senior investigators employed or legitimately affiliated with an academic, non-profit or government institution who have a track record in the field. We would ask the researcher to sign a data access agreement that needs to be signed by applicants and legal representatives of their universities. In addition, we would require a research proposal, to ensure that 'Applications for access to Data must be Specific, Measurable, Attainable, Resourced and Timely.' The applicant must implement the proposed research within the designed time frame and the data must be deleted after finishing the proposal.

The following data sets were generated

Article and author information

Author details

  1. Xiaojing Chu

    Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna WM Janssen

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Hans Koenen

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Linzhung Chang

    Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Xuehui He

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Irma Joosten

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Rinke Stienstra

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Yunus Kuijpers

    Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5075-3970
  9. Cisca Wijmenga

    Department of Genetics, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5635-1614
  10. Cheng-Jian Xu

    Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1586-4672
  11. Mihai G Netea

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2421-6052
  12. Cees J Tack

    Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    For correspondence
    Cees.Tack@radboudumc.nl
    Competing interests
    The authors declare that no competing interests exist.
  13. Yang Li

    Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
    For correspondence
    yang.li@helmholtz-hzi.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4022-7341

Funding

ERC Starting grant (948207)

  • Yang Li

Radboud Universitair Medisch Centrum (Hypatia Grant 2018)

  • Yang Li

ERC advanced grant (833247)

  • Mihai G Netea

the Netherlands Association of Scientific Reasearch (Spinoza grant)

  • Mihai G Netea

the Netherlands Organisation for Scientific Research (Perspectief Biomarker Development Center Research Programme)

  • Cees J Tack

European Foundation for the Study of Diabetes (AZ Macrovascular Programme 2015)

  • Anna WM Janssen

China Scholarship Council (201706040081)

  • Anna WM Janssen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The 500FG-DM study was approved by the ethical committee of Radboud University Nijmegen (NL-number: 54214.091.15). Experiments were conducted according to the principles expressed in the Declaration of Helsinki. Written informed consent was obtained from all participants.

Copyright

© 2022, Chu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,280
    views
  • 438
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaojing Chu
  2. Anna WM Janssen
  3. Hans Koenen
  4. Linzhung Chang
  5. Xuehui He
  6. Irma Joosten
  7. Rinke Stienstra
  8. Yunus Kuijpers
  9. Cisca Wijmenga
  10. Cheng-Jian Xu
  11. Mihai G Netea
  12. Cees J Tack
  13. Yang Li
(2022)
A genome-wide functional genomics approach uncovers genetic determinants of immune phenotypes in type 1 diabetes
eLife 11:e73709.
https://doi.org/10.7554/eLife.73709

Share this article

https://doi.org/10.7554/eLife.73709

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.