Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids

  1. Debdeep Chatterjee
  2. Reeba S Jacob
  3. Soumik Ray
  4. Ambuja Navalkar
  5. Namrata Singh
  6. Shinjinee Sengupta
  7. Laxmikant Gadhe
  8. Pradeep Kadu
  9. Debalina Datta
  10. Ajoy Paul
  11. Sakunthala Arunima
  12. Surabhi Mehra
  13. Chinmai Pindi
  14. Santosh Kumar
  15. Praful Singru
  16. Sanjib Senapati
  17. Samir K Maji  Is a corresponding author
  1. Indian Institute of Technology Bombay, India
  2. Indian Institute of Technology Madras, India
  3. National Institute of Science Education and Research, India

Abstract

Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for main Figures 1-5 and Supplementary figures and tables.

Article and author information

Author details

  1. Debdeep Chatterjee

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Reeba S Jacob

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Soumik Ray

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Ambuja Navalkar

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Namrata Singh

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Shinjinee Sengupta

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  7. Laxmikant Gadhe

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  8. Pradeep Kadu

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Debalina Datta

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Ajoy Paul

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  11. Sakunthala Arunima

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  12. Surabhi Mehra

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1777-673X
  13. Chinmai Pindi

    Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  14. Santosh Kumar

    School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  15. Praful Singru

    School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  16. Sanjib Senapati

    Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  17. Samir K Maji

    Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
    For correspondence
    samirmaji@iitb.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9110-1565

Funding

Department of Biotechnology, Ministry of Science and Technology, India (BT/PR9797/NNT/28/774/2014)

  • Samir K Maji

Department of Biotechnology, Ministry of Science and Technology, India (BT/HRD/35/01/03/2020)

  • Samir K Maji

Department of Science and Technology, Ministry of Science and Technology, India (CRG/2019/001133)

  • Samir K Maji

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Adult, female, Sprague-Dawley rats taken for this study were maintained under the standard environmental conditions and Institutional Animal Ethical Committee (IAEC) at NISER, Bhubaneswar, India approved the experimental protocols. (Protocol Numbers: NISER/SBS/AH-210 and NISER/SBS/AH-212).

Copyright

© 2022, Chatterjee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,287
    views
  • 370
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debdeep Chatterjee
  2. Reeba S Jacob
  3. Soumik Ray
  4. Ambuja Navalkar
  5. Namrata Singh
  6. Shinjinee Sengupta
  7. Laxmikant Gadhe
  8. Pradeep Kadu
  9. Debalina Datta
  10. Ajoy Paul
  11. Sakunthala Arunima
  12. Surabhi Mehra
  13. Chinmai Pindi
  14. Santosh Kumar
  15. Praful Singru
  16. Sanjib Senapati
  17. Samir K Maji
(2022)
Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids
eLife 11:e73835.
https://doi.org/10.7554/eLife.73835

Share this article

https://doi.org/10.7554/eLife.73835

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.