Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing

  1. Jayashree Kumar
  2. Lela Lackey
  3. Justin M Waldern
  4. Abhishek Dey
  5. Anthony M Mustoe
  6. Kevin Weeks
  7. David H Mathews
  8. Alain Laederach  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. Clemson University, United States
  3. Baylor College of Medicine, United States
  4. University of Rochester, United States

Abstract

Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor messenger RNA (mRNA) structure and downstream function is particularly challenging. Here we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on precursor mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with precursor mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a b-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and six newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.

Data availability

Sequencing data have been deposited in SRA under BioProject ID PRJNA762079 and PRJNA812003.DMS Reactivities are available as SNRNASMs at https://bit.ly/2WaDw6FAll data generated or analyzed during this study are included in the manuscript and supporting files; Source Data files have been provided for Figures 1,2,4,5 and 6.Modeling and feature generation code is uploaded at https://git.io/JuSW8

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jayashree Kumar

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6914-748X
  2. Lela Lackey

    Department of Genetics and Biochemistry, Clemson University, Greenwood, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Justin M Waldern

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Abhishek Dey

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Anthony M Mustoe

    Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Weeks

    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David H Mathews

    Department of Biochemistry and Biophysics, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alain Laederach

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    alain@unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5088-9907

Funding

National Institutes of Health (R01 HL111527)

  • Alain Laederach

National Institutes of Health (R35 GM 140844)

  • Alain Laederach

National Institutes of Health (R01 GM076485)

  • David H Mathews

National Institutes of Health (R35 GM122532)

  • Kevin Weeks

Cancer Prevention and Research Institute of Texas (CPRIT Scholar)

  • Anthony M Mustoe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,092
    views
  • 455
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jayashree Kumar
  2. Lela Lackey
  3. Justin M Waldern
  4. Abhishek Dey
  5. Anthony M Mustoe
  6. Kevin Weeks
  7. David H Mathews
  8. Alain Laederach
(2022)
Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing
eLife 11:e73888.
https://doi.org/10.7554/eLife.73888

Share this article

https://doi.org/10.7554/eLife.73888

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.