Barcoded Bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast

  1. Alex N Nguyen Ba
  2. Katherine R Lawrence
  3. Artur Rego-Costa
  4. Shreyas Gopalakrishnan
  5. Daniel Temko
  6. Franziska Michor
  7. Michael M Desai  Is a corresponding author
  1. Harvard University, United States
  2. Massachusetts Institute of Technology, United States
  3. Dana-Farber Cancer Institute, United States

Abstract

Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.

Data availability

Code used for this study is available at https://github.com/arturrc/bbqtl_inference. FASTQ files from high-throughput sequencing have been deposited in the NCBI BioProject database with accession number PRJNA767876. Inferred genotype and phenotype data is deposited in Dryad (doi: 10.5061/dryad.1rn8pk0vd).

The following data sets were generated

Article and author information

Author details

  1. Alex N Nguyen Ba

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1357-6386
  2. Katherine R Lawrence

    Department of Physics, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Artur Rego-Costa

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shreyas Gopalakrishnan

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Temko

    Department of Biostatistics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Franziska Michor

    Department of Data Science, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael M Desai

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    mdesai@oeb.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9581-1150

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN-2021-02716)

  • Alex N Nguyen Ba

National Science Foundation (#1764269)

  • Katherine R Lawrence

National Institutes of Health (U54CA193461)

  • Michael M Desai

National Science Foundation (PHY-1914916)

  • Franziska Michor

National Institutes of Health (GM104239)

  • Michael M Desai

Natural Sciences and Engineering Research Council of Canada (DGECR-2021-00117)

  • Alex N Nguyen Ba

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Nguyen Ba et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,135
    views
  • 522
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alex N Nguyen Ba
  2. Katherine R Lawrence
  3. Artur Rego-Costa
  4. Shreyas Gopalakrishnan
  5. Daniel Temko
  6. Franziska Michor
  7. Michael M Desai
(2022)
Barcoded Bulk QTL mapping reveals highly polygenic and epistatic architecture of complex traits in yeast
eLife 11:e73983.
https://doi.org/10.7554/eLife.73983

Share this article

https://doi.org/10.7554/eLife.73983

Further reading

    1. Evolutionary Biology
    Julia D Sigwart, Yunlong Li ... Jin Sun
    Research Article

    A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.

    1. Evolutionary Biology
    Mauna R Dasari, Kimberly E Roche ... Elizabeth A Archie
    Research Article

    Mammalian gut microbiomes are highly dynamic communities that shape and are shaped by host aging, including age-related changes to host immunity, metabolism, and behavior. As such, gut microbial composition may provide valuable information on host biological age. Here, we test this idea by creating a microbiome-based age predictor using 13,563 gut microbial profiles from 479 wild baboons collected over 14 years. The resulting ‘microbiome clock’ predicts host chronological age. Deviations from the clock’s predictions are linked to some demographic and socio-environmental factors that predict baboon health and survival: animals who appear old-for-age tend to be male, sampled in the dry season (for females), and have high social status (both sexes). However, an individual’s ‘microbiome age’ does not predict the attainment of developmental milestones or lifespan. Hence, in our host population, gut microbiome age largely reflects current, as opposed to past, social and environmental conditions, and does not predict the pace of host development or host mortality risk. We add to a growing understanding of how age is reflected in different host phenotypes and what forces modify biological age in primates.