Temporal analysis of enhancers during mouse cerebellar development reveals dynamic and novel regulatory functions

Abstract

We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas (https://goldowitzlab.shinyapps.io/developing_mouse_cerebellum_enhancer_atlas/), where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE183697

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Miguel Ramirez

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuliya Badayeva

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Joanna Yeung

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0551-5305
  4. Joshua Wu

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ayasha Abdalla-Wyse

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Erin Yang

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5629-2362
  7. FANTOM 5 Consortium

    Department of Molecular Genetics, Hospital for Sick Children, Toronto, Canada
  8. Brett Trost

    The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4863-7273
  9. Stephen W Scherer

    Department of Molecular Genetics, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8326-1999
  10. Daniel Goldowitz

    Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
    For correspondence
    dang@cmmt.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4756-4017

Funding

NSERC Discovery Award

  • Daniel Goldowitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies were conducted according to the protocols approved by the Institutional Animal Care and Use Committee and the Canadian Council on Animal Care at the University of British Columbia.

Copyright

© 2022, Ramirez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miguel Ramirez
  2. Yuliya Badayeva
  3. Joanna Yeung
  4. Joshua Wu
  5. Ayasha Abdalla-Wyse
  6. Erin Yang
  7. FANTOM 5 Consortium
  8. Brett Trost
  9. Stephen W Scherer
  10. Daniel Goldowitz
(2022)
Temporal analysis of enhancers during mouse cerebellar development reveals dynamic and novel regulatory functions
eLife 11:e74207.
https://doi.org/10.7554/eLife.74207

Share this article

https://doi.org/10.7554/eLife.74207

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.