Detection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis using aneuploidy and mutation identification in plasma

Abstract

Malignant peripheral nerve sheath tumors (MPNST) are the deadliest cancer that arises in individuals diagnosed with neurofibromatosis and account for nearly 5% of the 15,000 soft tissue sarcomas diagnosed in the United States each year. Comprised of neoplastic Schwann cells, primary risk factors for developing MPNST include existing plexiform neurofibromas (PN), prior radiotherapy treatment, and expansive germline mutations involving the entire NF1 gene and surrounding genes. PN develop in nearly 30-50% of patients with NF1 and most often grow rapidly in the first decade of life. One of the most important aspects of clinical care for NF1 patients is monitoring PN for signs of malignant transformation to MPNST that occurs in 10-15% of patients. We perform aneuploidy analysis on ctDNA from 883 ostensibly healthy individuals and 28 patients with neurofibromas, including 7 patients with benign neurofibroma, 9 patients with PN and 12 patients with MPNST. Overall sensitivity for detecting MPNST using genome wide aneuploidy scoring was 33%, and analysis of sub-chromosomal copy number alterations (CNAs) improved sensitivity to 50% while retaining a high specificity of 97%. In addition, we performed mutation analysis on plasma cfDNA for a subset of patients and identified mutations in NF1, NF2, RB1, TP53BP2, and GOLGA2. Given the high throughput and relatively low sequencing coverage required by our assay, liquid biopsy represents a promising technology to identify incipient MPNST.

Data availability

Code is available at https://zenodo.org/record/3656943#.YaZZCdDMKUk.

Article and author information

Author details

  1. Austin K Mattox

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7567-5542
  2. Christopher Douville

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    Christopher Douville, is a consultant to Exact Sciences and is compensated with income and equity..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2510-4151
  3. Natalie Silliman

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Janine Ptak

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Lisa Dobbyn

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Joy Schaefer

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Maria Popoli

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Cherie Blair

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Kathy Judge

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  10. Kai Pollard

    Department of Pediatrics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Christine Pratilas

    Department of Pediatrics, Johns Hopkins University, Baltimore, United States
    Competing interests
    Christine Pratilas, is a paid consultant for Roche/ Genentech and Day One Therapeutics; and receives research funding from Kura Oncology and Novartis Institute of Biomedical Research, all for work that is outside the scope of the submitted manuscript..
  12. Jaishri Blakeley

    Department of Pediatrics, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  13. Fausto Rodriguez

    Department of Pathology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  14. Nickolas Papadopoulos

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    Competing interests
    Nickolas Papadopoulos, is a founder of Thrive Earlier Detection, an Exact Sciences Company. Is a consultant to Thrive Earlier Detection. Holds equity in Exact Sciences. Is a founder of and holds equity in Personal Genome Diagnostics. Is a consultant to Personal Genome Diagnostics. Holds equity in and is a consultant to CAGE Pharma. Owns equity in Neophore and is a consultant to Neophore. The companies named above as well as other companies have licensed previously described technologies related to the work described in this paper from Johns Hopkins University. Is an inventor on some of these technologies. Licenses to these technologies are or will be associated with equity or royalty payments to the inventors as well as to Johns Hopkins University. The terms of all of these arrangements are being managed by Johns Hopkins University in accordance with its conflict-of-interest policies..
  15. Allan Belzberg

    Johns Hopkins Medicine, Baltimore`, United States
    For correspondence
    abelzeb1@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1158-2117
  16. Chetan Bettegowda

    Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University, Baltimore, United States
    For correspondence
    cbetteg1@jhmi.edu
    Competing interests
    Chetan Bettegowda, is a consultant for Depuy-Synthes, Galectin Therapeutics and Bionaut Labs..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9991-7123

Funding

National Institutes of Health (1R21CA208723-01)

  • Chetan Bettegowda

National Institutes of Health (R37 CA230400)

  • Chetan Bettegowda

National Institutes of Health (U01 CA230691)

  • Chetan Bettegowda

DOD (W81XWH-16-0078)

  • Allan Belzberg
  • Chetan Bettegowda

Doris Duke Charitable Foundation (grant 2014107)

  • Chetan Bettegowda

Burroughs Wellcome Fund (Career Award for Medical Scientists)

  • Chetan Bettegowda

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All individuals participating in the study provided written informed consent after approval by the institutional review board at The Johns Hopkins IRB00075499. The study complied with the Health Insurance Portability and Accountability Act and the Deceleration of Helsinki.

Copyright

© 2022, Mattox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,060
    views
  • 204
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Austin K Mattox
  2. Christopher Douville
  3. Natalie Silliman
  4. Janine Ptak
  5. Lisa Dobbyn
  6. Joy Schaefer
  7. Maria Popoli
  8. Cherie Blair
  9. Kathy Judge
  10. Kai Pollard
  11. Christine Pratilas
  12. Jaishri Blakeley
  13. Fausto Rodriguez
  14. Nickolas Papadopoulos
  15. Allan Belzberg
  16. Chetan Bettegowda
(2022)
Detection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis using aneuploidy and mutation identification in plasma
eLife 11:e74238.
https://doi.org/10.7554/eLife.74238

Share this article

https://doi.org/10.7554/eLife.74238

Further reading

    1. Cancer Biology
    Rui Vasco Simoes, Rafael Neto Henriques ... Noam Shemesh
    Research Article

    Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.