Diverse ancestry whole-genome sequencing association study identifies TBX5 and PTK7 as susceptibility genes for posterior urethral valves
Abstract
Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (P=7.8x10-12; OR 0.4) and rare variants at 6p21.1 (P=2.0x10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4,151 controls. Fine-mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (P=3.1x10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.
Data availability
All genetic and phenotypic data from the 100,000 Genomes Project and can be accessed by application to Genomics England Ltd (https://www.genomicsengland.co.uk/about-gecip/joining-research-community/). Access is free for academic research institutions and universities as well as public and private healthcare organsisations that undertake significant research activity. This dataset includes de-identified, linked information for each participant including genome sequence data, variant call files, phenotype/clinical data and Hospital Episode Statistics (HES) with access gained through a secure Research Environment. No sequencing or identifiable personal data is available for download.The full GWAS summary statistics have been uploaded to the NHGRI-EBI GWAS Catalog prior to publication.Source Data files have been provided for Figures 2, 6, 9 and 10 containing the numerical data used to generate figures.Custom R Code for the case-control ancestry-matching algorithm can be found at https://github.com/APLevine/PCA_Matching.Code for SAIGE and SAIGE-GENE can be found at https://github.com/weizhouUMICH/SAIGE.Code for PAINTOR is available at https://github.com/gkichaev/PAINTOR_V3.0.Functional annotation and MAGMA gene and gene-set analysis were performed using the web-based platform FUMA (https://fuma.ctglab.nl).Custom R code for the structural variant burden analysis has been uploaded as SV Burden Testing - Source Code 1.
-
The GTEx Consortium atlas of genetic regulatory effects across human tissuesGTEx (V8), doi: 10.1126/science.aaz1776.
-
Expanded encyclopaedias of DNA elements in the human and mouse genomesENCODE, doi:10.1038/s41586-020-2493-4.
-
Integrative analysis of 111 reference human epigenomesRoadmap Epigneomics Project, doi: 10.1038/nature14248.
-
Chromatin architecture reorganization during stem cell differentiationNCBI Gene Expression Omnibus, GSE52457, doi: 10.1038/nature14222.
-
JASPAR 2020: update of the open-access database of transcription factor binding profilesJASPAR (2020), doi: 10.1093/nar/gkz1001.
-
The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019.GCST002890, DOI: 10.1093/nar/gky1120.
Article and author information
Author details
Funding
Kidney Research UK (TF_004_20161125)
- Melanie Mai Yee Chan
Medical Research Council (MR/S021329/1)
- Omid Sadeghi-Alavijeh
Medical Research Council (MR/T016809/1)
- Adrian S Woolf
St Peter's Trust for Kidney Bladder and Prostate Research
- Daniel P Gale
National Institute for Health and Care Research
- Adam P Levine
Kidney Research UK (Paed_RP_002_20190925)
- Glenda M Beaman
- William G Newman
- Adrian S Woolf
BONFOR-Gerok Grant
- Alina C Hilger
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethical approval for the 100,000 Genomes Project was granted by the Research Ethics Committee for East of England - Cambridge South (REC Ref 14/EE/1112). Written informed consent was obtained from all participants and/or their guardians.Human embryonic tissues, collected after maternal consent and ethical approval (REC18/NE/0290), were sourced from the Medical Research Council and Wellcome Trust Human Developmental Biology Resource (https://www.hdbr.org/).
Copyright
© 2022, Chan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,234
- views
-
- 233
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.
-
- Developmental Biology
- Neuroscience
Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.