Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling

  1. Brian Czaya
  2. Kylie Heitman
  3. Isaac Campos
  4. Christopher Yanucil
  5. Dominik Kentrup
  6. David Westbrook
  7. Orlando Gutierrez
  8. Jodie L Babitt
  9. Grace Jung
  10. Isidro B Salusky
  11. Mark Hanudel
  12. Christian Faul  Is a corresponding author
  1. David Geffen School of Medicine at UCLA, United States
  2. University of Alabama at Birmingham, United States
  3. Massachusetts General Hospital, United States

Abstract

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.

Data availability

All data generated and analyzed during this study is available through Dryad.

The following data sets were generated

Article and author information

Author details

  1. Brian Czaya

    Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Kylie Heitman

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5345-2727
  3. Isaac Campos

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  4. Christopher Yanucil

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  5. Dominik Kentrup

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  6. David Westbrook

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    No competing interests declared.
  7. Orlando Gutierrez

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    Orlando Gutierrez, has received honoraria and grant support from Akebia and Amgen, grant support from GSK, honoraria from Ardelyx, Reata, and AstraZeneca, and serves on the Data Monitoring Committee for QED.
  8. Jodie L Babitt

    Division of Nephrology, Massachusetts General Hospital, Boston, United States
    Competing interests
    Jodie L Babitt, has ownership interest in Ferrumax Pharmaceuticals and has been a consultant for Incyte Corporation, and Alnylam Pharmaceuticals.
  9. Grace Jung

    Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Isidro B Salusky

    Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  11. Mark Hanudel

    Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Christian Faul

    Department of Medicine, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    cfaul@uabmc.edu
    Competing interests
    Christian Faul, has served as a consultant for Bayer and Calico Labs, and he is the founder and currently the CSO of a startup biotech company (Alpha Young LLC)u.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7512-0977

Funding

National Institutes of Health (F31-DK-117550)

  • Brian Czaya

National Institutes of Health (F31-DK-115074)

  • Christopher Yanucil

National Institutes of Health (R01-HL-128714; R01-HL-145528)

  • Christian Faul

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols and experimental procedures for adenine diet in FGFR4+/+ and FGFR4-/- mice, graded phosphate diets in FGFR4+/+ and FGFR4-/- mice, low phosphate diets in COL4A3+/+ and COL4A3-/- mice and primary hepatocyte isolations from wild-type C57BL/6J mice, were approved by the Institutional Animal Care and Use Committees (IACUC) at the University of Alabama Birmingham School of Medicine (#22089). All animals were maintained in a ventilated rodent-housing system with temperature-controlled environments (22-23{degree sign}C) with a 12-hour light/dark cycle and allowed ad libitum access to food and water. All protocols adhered to the Guide for Care and Use of Laboratory Animals to minimize pain and suffering. No animals were excluded from analysis.

Copyright

© 2022, Czaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Czaya
  2. Kylie Heitman
  3. Isaac Campos
  4. Christopher Yanucil
  5. Dominik Kentrup
  6. David Westbrook
  7. Orlando Gutierrez
  8. Jodie L Babitt
  9. Grace Jung
  10. Isidro B Salusky
  11. Mark Hanudel
  12. Christian Faul
(2022)
Hyperphosphatemia increases inflammation to exacerbate anemia and skeletal muscle wasting independently of FGF23-FGFR4 signaling
eLife 11:e74782.
https://doi.org/10.7554/eLife.74782

Share this article

https://doi.org/10.7554/eLife.74782

Further reading

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.

    1. Cell Biology
    Ryan M Finnerty, Daniel J Carulli ... Wipawee Winuthayanon
    Research Article

    The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a multi-omics characterization of oviductal tissues utilizing bulk RNA-sequencing (RNA-seq), single-cell RNA-sequencing (scRNA-seq), and proteomics collected from distal and proximal at various stages after mating in mice. We observed robust region-specific transcriptional signatures. Specifically, the presence of sperm induces genes involved in pro-inflammatory responses in the proximal region at 0.5 days post-coitus (dpc). Genes involved in inflammatory responses were produced specifically by secretory epithelial cells in the oviduct. At 1.5 and 2.5 dpc, genes involved in pyruvate and glycolysis were enriched in the proximal region, potentially providing metabolic support for developing embryos. Abundant proteins in the oviductal fluid were differentially observed between naturally fertilized and superovulated samples. RNA-seq data were used to identify transcription factors predicted to influence protein abundance in the proteomic data via a novel machine learning model based on transformers of integrating transcriptomics and proteomics data. The transformers identified influential transcription factors and correlated predictive protein expressions in alignment with the in vivo-derived data. Lastly, we found some differences between inflammatory responses in sperm-exposed mouse oviducts compared to hydrosalpinx Fallopian tubes from patients. In conclusion, our multi-omics characterization and subsequent in vivo confirmation of proteins/RNAs indicate that the oviduct is adaptive and responsive to the presence of sperm and embryos in a spatiotemporal manner.