Abstract

mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.

Data availability

The following files contain the per-cell fluorescence intensity data, extracted from microscope image data, that were used to generate each figure in the paper:Sparta2023_Figure1_SourceData1.xlsSparta2023_Figure1_SourceData2.xlsSparta2023_Figure2_SourceData1.xlsxSparta2023_Figure3_SourceData1.xlsSparta2023_Figure4_SourceData1.xlsxSparta2023_Figure4_SourceData2.xlsxSparta2023_Figure4_SourceData3.xlsxSparta2023_Figure4_SourceData4.xlsxSparta2023_Figure4_SourceData5.xlsxSparta2023_Figure4_SourceData6.xlsxSparta2023_Figure5_SourceData1.xlsxSparta2023_Figure5_SourceData2.xlsxSparta2023_Figure5_SourceData3.xlsxSparta2023_Figure5_SourceData4.xlsxSparta2023_Figure6_SourceData1.xlsx

Article and author information

Author details

  1. Breanne Sparta

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Nont Kosaisawe

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  3. Michael Pargett

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  4. Madhura Patankar

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  5. Nicholaus DeCuzzi

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. John G Albeck

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    jgalbeck@ucdavis.edu
    Competing interests
    John G Albeck, John Albeck has received research grants from Kirin Corporation..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2688-8653

Funding

National Institute of General Medical Sciences (R35GM139621)

  • John G Albeck

National Institute of General Medical Sciences (R01GM115650)

  • John G Albeck

National Science Foundation (2136040)

  • John G Albeck

National Heart, Lung, and Blood Institute (T32HL007013)

  • Nicholaus DeCuzzi

National Institute of General Medical Sciences (F31GM120937)

  • Breanne Sparta

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Sparta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,975
    views
  • 289
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Breanne Sparta
  2. Nont Kosaisawe
  3. Michael Pargett
  4. Madhura Patankar
  5. Nicholaus DeCuzzi
  6. John G Albeck
(2023)
Continuous sensing of nutrients and growth factors by the mTORC1-TFEB axis
eLife 12:e74903.
https://doi.org/10.7554/eLife.74903

Share this article

https://doi.org/10.7554/eLife.74903

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.