Abstract

To fight the Covid-19 pandemic caused by the RNA virus SARS-CoV-2 a global vaccination campaign is in progress to achieve the immunization of billions of people mainly with adenoviral vector- or mRNA-based vaccines, all of which encode the SARS-CoV-2 Spike protein. In some rare cases, cerebral venous sinus thromboses (CVST) have been reported as a severe side effect occurring 4 to 14 days after the first vaccination and were often accompanied by thrombocytopenia. Besides CVST, splanchnic vein thromboses (SVT) and other thromboembolic events have been observed. These events only occurred following vaccination with adenoviral vector-based vaccines but not following vaccination with mRNA-based vaccines. Meanwhile, scientists have proposed an immune-based pathomechanism and the condition has been coined Vaccine-induced Immune Thrombotic Thrombocytopenia (VITT). Here, we describe an unexpected mechanism that could explain thromboembolic events occurring with DNA-based but not with RNA-based vaccines. We show that DNA-encoded mRNA coding for Spike protein can be spliced in a way that the transmembrane anchor of Spike is lost, so that nearly full-length Spike is secreted from cells. Secreted Spike variants could potentially initiate severe side effects when binding to cells via the ACE2 receptor. Avoiding such splicing events should become part of a rational vaccine design to increase safety of prospective vaccines.

Data availability

The original WUHAN SARS-CoV-2 sequence is available in the NCBI database (NCBI Reference Sequence: NC_045512.2); the adenoviral and codon-optimized Spike sequence data have a protected intellectual property by the companies. The primary sequence of Ad5.S, designed and used by the colleagues in Ulm, can be retrieved upon request (contact Prof. Stefan Kochanek).

The following previously published data sets were used

Article and author information

Author details

  1. Eric Kowarz

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Lea Krutzke

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4092-4131
  3. Marius Külp

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick Streb

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrizia Larghero

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jennifer Reis

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Silvia Bracharz

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Tatjana Engler

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Stefan Kochanek

    Department of Gene Therapy, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Rolf Marschalek

    Institute of Pharmaceutical Biology, Goethe-University, Frankfurt/Main, Germany
    For correspondence
    Rolf.Marschalek@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4870-3445

Funding

Goethe University Corona Task Force

  • Rolf Marschalek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kowarz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,775
    views
  • 777
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric Kowarz
  2. Lea Krutzke
  3. Marius Külp
  4. Patrick Streb
  5. Patrizia Larghero
  6. Jennifer Reis
  7. Silvia Bracharz
  8. Tatjana Engler
  9. Stefan Kochanek
  10. Rolf Marschalek
(2022)
Vaccine-induced COVID-19 mimicry syndrome
eLife 11:e74974.
https://doi.org/10.7554/eLife.74974

Share this article

https://doi.org/10.7554/eLife.74974

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.