Cortical microtubule pulling forces contribute to the union of the parental genomes in the C. elegans zygote

Abstract

Previously, we reported that the Polo-like kinase PLK-1 phosphorylates the single C. elegans lamin (LMN-1) to trigger lamina depolymerization during mitosis. We showed that this event is required to form a pronuclear envelopes scission event that removes membranes on the juxtaposed oocyte and sperm pronuclear envelopes in the zygote, allowing the parental chromosomes to merge in a single nucleus after segregation (Velez-Aguilera et al., 2020). Here we show that cortical microtubule pulling forces contribute to pronuclear envelopes scission by promoting mitotic spindle elongation, and conversely, nuclear envelope remodeling facilitates spindle elongation. We also demonstrate that weakening the pronuclear envelopes via PLK-1-mediated lamina depolymerization, is a prerequisite for the astral microtubule pulling forces to trigger pronuclear membranes scission. Finally, we provide evidence that PLK-1 mainly acts via lamina depolymerization in this process. These observations thus indicate that temporal coordination between lamina depolymerization and mitotic spindle elongation facilitates pronuclear envelopes scission and parental genomes unification.

Data availability

All the raw data are provided in the manuscript

Article and author information

Author details

  1. Griselda Velez-Aguilera

    Cell Cycle and Development, Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9662-8833
  2. Batool Ossareh-Nazari

    Cell Cycle and Development, Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucie Van Hove

    Cell Cycle and Development, Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Joly

    Cell Cycle and Development, Institut Jacques Monod, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Lionel Pintard

    Cell Cycle and Development, Institut Jacques Monod, Paris, France
    For correspondence
    Lionel.PINTARD@ijm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0286-4630

Funding

Agence Nationale de la Recherche (ANR-17-CE13-0011)

  • Lionel Pintard

Consejo Nacional de Ciencia y Tecnología (CVU 364106)

  • Griselda Velez-Aguilera

Agence Nationale de la Recherche (ANR-18-IDEX-0001)

  • Nicolas Joly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Velez-Aguilera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,100
    views
  • 200
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Griselda Velez-Aguilera
  2. Batool Ossareh-Nazari
  3. Lucie Van Hove
  4. Nicolas Joly
  5. Lionel Pintard
(2022)
Cortical microtubule pulling forces contribute to the union of the parental genomes in the C. elegans zygote
eLife 11:e75382.
https://doi.org/10.7554/eLife.75382

Share this article

https://doi.org/10.7554/eLife.75382

Further reading

    1. Cell Biology
    Marjan Slak Rupnik
    Insight

    Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.

    1. Cell Biology
    Giuliana Giamundo, Daniela Intartaglia ... Ivan Conte
    Research Article

    Endosomes have emerged as major signaling hubs where different internalized ligand–receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane–actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC complex) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was not sufficient to repress TSC complex by EGF and culminated in translocation of TSC complex to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRINT567D is sufficient to relocalize TSC complex to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC complex in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.