The inherent flexibility of receptor binding domains in SARS-CoV-2 spike protein
Abstract
Spike (S) protein is the primary antigenic target for neutralization and vaccine development for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It decorates the virus surface and undergoes large motions of its receptor binding domains (RBDs) to enter the host cell. Here, we observe Down, one-Up, one-Open, and two-Up-like structures in enhanced molecular dynamics simulations, and characterize the transition pathways via inter-domain interactions. Transient salt-bridges between RBDA and RBDC and the interaction with glycan at N343B support RBDA motions from Down to one-Up. Reduced interactions between RBDA and RBDB in one-Up induce RBDB motions toward two-Up. The simulations overall agree with cryo-EM structure distributions and FRET experiments and provide hidden functional structures, namely, intermediates along Down to one-Up transition with druggable cryptic pockets as well as one-Open with a maximum exposed RBD. The inherent flexibility of S-protein thus provides essential information for antiviral drug rational design or vaccine development.
Data availability
The trajectories were computed with GENESIS 2.0 beta, open source program https:// www.r-ccs.riken.jp/labs/cbrt/ and analyzed using GENESIS 1.6.0 analysis tools https://www.r-ccs.riken.jp/labs/cbrt/download/genesis-version-1-6/ Simulation data were deposited at https://covid.molssi.org/ Data of gREST simulations from Down including models and simulation structures are availableHisham M. Dokainish, Suyong Re, Takaharu Mori, Chigusa Kobayashi, Jaewoon Jung, and Yuji Sugita (2021) MolSSI gREST_SSCR Simulation of Trimeric SARS-CoV-2 Spike Protein Starting From Down Conformation. https://doi.org/10.34974/wtbx-0r84Data of gREST_Up simulations including model and simulation structures are availableHisham M. Dokainish, Suyong Re, Takaharu Mori, Chigusa Kobayashi, Jaewoon Jung, and Yuji Sugita (2021) MolSSI gREST_SSCR Simulation of Trimeric SARS-CoV-2 Spike Protein Starting From 1Up Conformation. https://doi.org/10.34974/xn67-xk26
Article and author information
Author details
Funding
Ministry of Education, Culture, Sports, Science and Technology (FLAGSHIP 2020 project)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (19K06532)
- Takaharu Mori
RIKEN (Dynamic Structural Biology/Glycolipidologue Initiative/Biology of Intracellular Environments)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (Priority Issue on Post-K computer)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (Program for Promoting Researches on the Supercomputer Fugaku)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (JPMXP1020200101)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (JPMXP1020200201)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (19H05645)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (21H05249)
- Yuji Sugita
Ministry of Education, Culture, Sports, Science and Technology (20K15737)
- Hisham M Dokainish
Ministry of Education, Culture, Sports, Science and Technology (19K12229)
- Suyong Re
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Dokainish et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,891
- views
-
- 352
- downloads
-
- 58
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
The protein ligase Connectase can be used to fuse proteins to small molecules, solid carriers, or other proteins. Compared to other protein ligases, it offers greater substrate specificity, higher catalytic efficiency, and catalyzes no side reactions. However, its reaction is reversible, resulting in only 50% fusion product from two equally abundant educts. Here, we present a simple method to reliably obtain 100% fusion product in 1:1 conjugation reactions. This method is efficient for protein-protein or protein-peptide fusions at the N- or C-termini. It enables the generation of defined and completely labeled antibody conjugates with one fusion partner on each chain. The reaction requires short incubation times with small amounts of enzyme and is effective even at low substrate concentrations and at low temperatures. With these characteristics, it presents a valuable new tool for bioengineering.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.