A neural progenitor mitotic wave is required for asynchronous axon outgrowth and morphology

  1. Jérôme Lacoste  Is a corresponding author
  2. Hédi Soula
  3. Angélique Burg
  4. Agnès Audibert
  5. Pénélope Darnat
  6. Michel Gho  Is a corresponding author
  7. Sophie Louvet-Vallée  Is a corresponding author
  1. CNRS Sorbonne-Université, France
  2. Sorbonne Université, INSERM, France

Abstract

Spatiotemporal mechanisms generating neural diversity are fundamental for understanding neural processes. Here, we investigated how neural diversity arises from neurons coming from identical progenitors. In the dorsal thorax of Drosophila, rows of mechanosensory organs originate from the division of sensory organ progenitor (SOPs). We show that in each row of the notum, an anteromedial located central SOP divides first, then neighbouring SOPs divide, and so on. This centrifugal wave of mitoses depends on cell-cell inhibitory interactions mediated by SOP cytoplasmic protrusions and Scabrous, a secreted protein interacting with the Delta/Notch complex. Furthermore, when this mitotic wave was reduced, axonal growth was more synchronous, axonal terminals had a complex branching pattern and fly behaviour was impaired. We show that the temporal order of progenitor divisions influences the birth order of sensory neurons, axon branching and impact on grooming behaviour. These data support the idea that developmental timing controls axon wiring neural diversity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jérôme Lacoste

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    For correspondence
    jerome.lacoste@sorbonne-universite.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Hédi Soula

    NutriOmics Research Unit, Sorbonne Université, INSERM, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Angélique Burg

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Agnès Audibert

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Pénélope Darnat

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Michel Gho

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    For correspondence
    michel.gho@sorbonne-universite.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Sophie Louvet-Vallée

    UMR 7622 laboratory of Developmental Biology, CNRS Sorbonne-Université, Paris, France
    For correspondence
    sophie.louvet_vallee@sorbonne-universite.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7577-2329

Funding

Funding was provided by recurrent subsides from the Centre National de la Recherche Scientifique and the Sorbonne University. No external funding was receives for this work.

Copyright

© 2022, Lacoste et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 791
    views
  • 110
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jérôme Lacoste
  2. Hédi Soula
  3. Angélique Burg
  4. Agnès Audibert
  5. Pénélope Darnat
  6. Michel Gho
  7. Sophie Louvet-Vallée
(2022)
A neural progenitor mitotic wave is required for asynchronous axon outgrowth and morphology
eLife 11:e75746.
https://doi.org/10.7554/eLife.75746

Share this article

https://doi.org/10.7554/eLife.75746

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.