Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane

  1. Siyoung Kim
  2. Jeeyun Chung
  3. Henning Arlt
  4. Alexander J Pak
  5. Robert V Farese Jnr
  6. Tobias C Walther
  7. Gregory A Voth  Is a corresponding author
  1. University of Chicago, United States
  2. Harvard T H Chan School of Public Health, United States
  3. Colorado School of Mines, United States
  4. Howard Hughes Medical Institute, Harvard T H Chan School of Public Health, United States

Abstract

Lipid droplets (LDs) are organelles formed in the endoplasmic reticulum (ER) to store triacylglycerol (TG) and sterol esters. The ER protein seipin is key for LD biogenesis. Seipin forms a cage-like structure, with each seipin monomer containing a conserved hydrophobic helix (HH) and two transmembrane (TM) segments. How the different parts of seipin function in TG nucleation and LD budding is poorly understood. Here, we utilized molecular dynamics simulations of human seipin, along with cell-based experiments, to study seipin's functions in protein-lipid interactions, lipid diffusion, and LD maturation. An all-atom (AA) simulation indicates that seipin TM segment residues and hydrophobic helices residues located in the phospholipid (PL) tail region of the bilayer attract TG. Simulating larger, growing LDs with coarse-grained (CG) models, we find that the seipin TM segments form a constricted neck structure to facilitate conversion of a flat oil lens into a budding LD. Using cell experiments and simulations, we also show that conserved, positively charged residues at the end of seipin's TM segments affect LD maturation. We propose a model in which seipin TM segments critically function in TG nucleation and LD growth.

Data availability

Numerical data represented as a graph in this manuscript are available at github.com/ksy141/seipin.

Article and author information

Author details

  1. Siyoung Kim

    Pritzker School of Molecular Engineering, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeeyun Chung

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Henning Arlt

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander J Pak

    Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert V Farese Jnr

    Department of Molecular Metabolism, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8103-2239
  6. Tobias C Walther

    Howard Hughes Medical Institute, Harvard T H Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gregory A Voth

    Department of Chemistry, University of Chicago, Chicago, United States
    For correspondence
    gavoth@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3267-6748

Funding

National Institutes of Health

  • Robert V Farese Jnr
  • Tobias C Walther
  • Gregory A Voth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,993
    views
  • 416
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siyoung Kim
  2. Jeeyun Chung
  3. Henning Arlt
  4. Alexander J Pak
  5. Robert V Farese Jnr
  6. Tobias C Walther
  7. Gregory A Voth
(2022)
Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane
eLife 11:e75808.
https://doi.org/10.7554/eLife.75808

Share this article

https://doi.org/10.7554/eLife.75808

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.