Absence of CEP78 causes photoreceptor and sperm flagella impairments in mice and a human individual
Abstract
Cone rod dystrophy (CRD) is a genetically inherited retinal disease that can be associated with male infertility, while the specific genetic mechanisms are not well known. Here we report CEP78 as a causative gene of a particular syndrome including CRD and male infertility with multiple morphological abnormalities of sperm flagella (MMAF) both in human and mouse. Cep78 knockout mice exhibited impaired function and morphology of photoreceptors, typified by reduced electroretinogram amplitudes, disrupted translocation of cone arrestin, attenuated and disorganized photoreceptor outer segments (OS) disks and widen OS bases, as well as interrupted connecting cilia elongation and abnormal structures. Cep78 deletion also caused male infertility and MMAF, with disordered '9 + 2' structure and triplet microtubules in sperm flagella. Intraflagellar transport (IFT) proteins IFT20 and TTC21A are identified as interacting proteins of CEP78. Furthermore, CEP78 regulated the interaction, stability, and centriolar localization of its interacting protein. Insufficiency of CEP78 or its interacting protein causes abnormal centriole elongation and cilia shortening. Absence of CEP78 protein in human caused similar phenotypes in vision and MMAF as Cep78-/- mice. Collectively, our study supports the important roles of CEP78 defects in centriole and ciliary dysfunctions and molecular pathogenesis of such multi-system syndrome.
Data availability
All H&E, PAS, immunofluorescence, TEM, SEM, uncropped gels and blots, and statistical data are available at corresponding source data files. All mass spectrometry data are available at Dryad deposit:Data of IP-MS was submitted to Dryad (Zhu, Tianyu et al. (2021), Anti-Cep78 immunoprecipitation (IP) coupled with quantitative MS (IP-MS) on testicular lysates of Cep78+/- and Cep78-/- mice, Dryad, Dataset).Data of quantitative MS on elongating spermatids lysates was submitted to Dryad (Dataset, Zhu, Tianyu et al. (2021), Quantitative mass spectrometry (MS) on elongating spermatids lysates of Cep78+/- and Cep78-/- mice, Dryad, Dataset).
-
Anti-Cep78 immunoprecipitation (IP) coupled with quantitative MS (IP-MS) on testicular lysates of Cep78+/- and Cep78-/- miceDryad Digital Repository, doi:10.5061/dryad.6djh9w12z.
-
Quantitative mass spectrometry (MS) on elongating spermatids lysates of Cep78+/- and Cep78-/- miceDryad Digital Repository, doi:10.5061/dryad.stqjq2c4p.
Article and author information
Author details
Funding
National Key Research and Development Program of China (2021YFC2700200)
- Xuejiang Guo
Shanghai Outstanding Academic Leaders (2017BR013)
- Chen Zhao
Six Talent Peaks Project in Jiangsu Province (YY-019)
- Xuejiang Guo
Basic Research Program of Jiangsu Province (BK20220316)
- Tianyu Zhu
Scientific Research Project of Gusu School of Nanjing Medical University (GSBSHKY20213)
- Tianyu Zhu
National Natural Science Foundation of China (82020108006)
- Chen Zhao
National Natural Science Foundation of China (81730025)
- Chen Zhao
National Natural Science Foundation of China (81971439)
- Xuejiang Guo
National Natural Science Foundation of China (81771641)
- Xuejiang Guo
National Natural Science Foundation of China (82070974)
- Xue Chen
National Natural Science Foundation of China (82060183)
- Xunlun Sheng
National Natural Science Foundation of China (82201764)
- Tianyu Zhu
China Postdoctoral Science Foundation (2022M711676)
- Tianyu Zhu
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All mice were raised in a specific-pathogen-free animal facility accredited by Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) in Model Animal Research Center, Nanjing University, China. The facility provided ultraviolet sterilization, a 12-hour light/dark cycle, ad libitum access to water, and standard mouse chow diet. Mice experiments were performed in accordance with approval of the Institutional Animal Care and Use Committee of Nanjing Medical University (IACUC-1707017-8) and with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.
Human subjects: Our study, conformed to the Declaration of Helsinki, was prospectively reviewed, and approved by the ethics committee of People's Hospital of Ningxia Hui Autonomous Region ([2016] Ethic Review [Scientific Research] NO. 018) and Nanjing Medical University (NMU Ethic Review NO. (2019) 916). Signed informed consents were obtained from all individuals in the study.
Copyright
© 2023, Zhu et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,210
- views
-
- 257
- downloads
-
- 6
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Stem Cells and Regenerative Medicine
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
-
- Developmental Biology
Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.