Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using equilibrium competing inert hydroxymethylene diphosphonate

  1. Hiroko Okawa
  2. Takeru Kondo
  3. Akishige Hokugo  Is a corresponding author
  4. Philip Cherian
  5. Jesus J Campagna
  6. Nicholas A Lentini
  7. Eric C Sung
  8. Samantha Chiang
  9. Yi-Ling Lin
  10. Frank H Ebetino
  11. Varghese John
  12. Shuting Sun  Is a corresponding author
  13. Charles E McKenna  Is a corresponding author
  14. Ichiro Nishimura  Is a corresponding author
  1. University of California, Los Angeles, United States
  2. BioVinc, United States
  3. University of Southern California, United States

Abstract

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) presents as a morbid jawbone lesion in patients exposed to a nitrogen-containing bisphosphonate (N-BP). Although it is rare, BRONJ has caused apprehension among patients and healthcare providers and decreased acceptance of this anti-resorptive drug class to treat osteoporosis and metastatic osteolysis. We report here a novel method to elucidate the pathological mechanism of BRONJ by the selective removal of legacy N-BP from the jawbone using an intra-oral application of hydroxymethylene diphosphonate (HMDP) formulated in liposome-based deformable nanoscale vesicles (DNV). After maxillary tooth extraction, zoledronate-treated mice developed delayed gingival wound closure, delayed tooth extraction socket healing and increased jawbone osteonecrosis consistent with human BRONJ lesion. Single cell RNA sequencing of mouse gingival cells revealed oral barrier immune dysregulation and unresolved pro-inflammatory reaction. HMDP-DNV topical applications to nascent mouse BRONJ lesions resulted in accelerated gingival wound closure and bone socket healing as well as attenuation of osteonecrosis development. The gingival single cell RNA sequencing demonstrated resolution of chronic inflammation by increased anti-inflammatory signature gene expression of lymphocytes and myeloid-derived suppressor cells. This study suggests that BRONJ pathology is related to N-BP levels in jawbones and demonstrates the potential of HMDP-DNV as an effective BRONJ therapy.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file. Single cell RNA sequencing data have been deposited in GEO under accession code GSE193110.

The following data sets were generated

Article and author information

Author details

  1. Hiroko Okawa

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Takeru Kondo

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Akishige Hokugo

    Department of Surgery, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    ahokugo@mednet.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7097-3364
  4. Philip Cherian

    BioVinc, Pasadena, United States
    Competing interests
    Philip Cherian, is an employee in BioVinc LLC..
  5. Jesus J Campagna

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Nicholas A Lentini

    Department of Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1701-0753
  7. Eric C Sung

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Samantha Chiang

    Section of Oral Biology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Yi-Ling Lin

    Section of Oral and Maxillofacial Pathology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  10. Frank H Ebetino

    BioVinc, Pasadena, United States
    Competing interests
    Frank H Ebetino, holds equity in BioVinc LLC and is an employee and has executive management positions in BioVinc LLC..
  11. Varghese John

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  12. Shuting Sun

    BioVinc, Pasadena, United States
    For correspondence
    shuting.sun@biovinc.com
    Competing interests
    Shuting Sun, holds equity in BioVinc LLC. SS is an employee and has executive management position in BioVinc LLC..
  13. Charles E McKenna

    Department of Chemistry, University of Southern California, Los Angeles, United States
    For correspondence
    mckenna@usc.edu
    Competing interests
    Charles E McKenna, is a board member and holds equity in Biovinc LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3540-6663
  14. Ichiro Nishimura

    Weintraub Center for Reconstructive Biotechnology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    inishimura@dentistry.ucla.edu
    Competing interests
    Ichiro Nishimura, was a consultant of BioVinc LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3749-9445

Funding

National Institute of Dental and Craniofacial Research (R01DE022552)

  • Ichiro Nishimura

National Institute of Dental and Craniofacial Research (R44DE025524)

  • Frank H Ebetino
  • Ichiro Nishimura

Tohoku University (Leading young researcher overseas visit program fellowship)

  • Hiroko Okawa

Japan Society for the Promotion of Science (19J117670)

  • Takeru Kondo

National Center for Research Resources (C06RR014529)

  • Ichiro Nishimura

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed at UCLA. All the protocols for animal experiments were approved by the UCLA Animal Research Committee (ARC# 1997-136) and followed the Public Health Service Policy for the Humane Care and Use of Laboratory Animals and the UCLA Animal Care and Use Training Manual guidelines. The C57Bl/6J mice (Jackson Laboratory) were used in this study. Animals consumed gel or regular food for rodents and water ad libitum and were maintained in regular housing conditions with a 12-hour-light/dark cycles at the Division of Laboratory Animal Medicine at UCLA.

Human subjects: This study was not conducted on human subjects. However, the manuscript contains clinical demonstration of human BRONJ obtained from patients of UCLA School of Dentistry clinic with the general consent for educational use. The information was not part of investigator-initiated research.

Copyright

© 2022, Okawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,335
    views
  • 413
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiroko Okawa
  2. Takeru Kondo
  3. Akishige Hokugo
  4. Philip Cherian
  5. Jesus J Campagna
  6. Nicholas A Lentini
  7. Eric C Sung
  8. Samantha Chiang
  9. Yi-Ling Lin
  10. Frank H Ebetino
  11. Varghese John
  12. Shuting Sun
  13. Charles E McKenna
  14. Ichiro Nishimura
(2022)
Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using equilibrium competing inert hydroxymethylene diphosphonate
eLife 11:e76207.
https://doi.org/10.7554/eLife.76207

Share this article

https://doi.org/10.7554/eLife.76207

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Kira Breunig, Xuifen Lei ... Luiz O Penalva
    Research Article

    RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1’s interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer’s brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.

    1. Biochemistry and Chemical Biology
    Parnian Arafi, Sujan Devkota ... Michael S Wolfe
    Research Article

    Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer’s disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.