Elevated brain-derived cell-free DNA among patients with first psychotic episode - a proof-of-concept study
Abstract
Schizophrenia is a common, severe and debilitating psychiatric disorder. Despite extensive research there is as yet no biological marker that can aid in its diagnosis and course prediction. This precludes early detection and intervention. Imaging studies suggest brain volume loss around the onset and over the first few years of schizophrenia, and apoptosis has been proposed as the underlying mechanism. Cell-free DNA fragments (cfDNA) are released into the bloodstream following cell death. Tissue-specific methylation patterns allow the identification of the tissue origins of cfDNA. We developed a cocktail of brain specific DNA methylation markers, and used it to assess the presence of brain-derived cfDNA in the plasma of patients with a first psychotic episode. We detected significantly elevated neuron- (p=0.0013), astrocyte- (p=0.0016), oligodendrocyte- (p=0.0129) and whole brain-derived (p=0.0012) cfDNA in the plasma of patients during their first psychotic episode (n=29), compared with healthy controls (n=31). Increased cfDNA levels were not correlated with psychotropic medications use. Area Under the Curve (AUC) was 0.77, with 65% sensitivity at 90% specificity in patients with a psychotic episode. Potential interpretations of these findings include increased brain cell death, disruption of the blood-brain barrier or a defect in clearance of material from dying brain cells. Brain-specific cfDNA methylation markers can potentially assist early detection and monitoring of schizophrenia and thus allow early intervention and adequate therapy.
Data availability
All relevant data including information on the markers used (coordinates and primer sequences), detailed information on patients and donors and the raw data on values of each methylation marker in each sample is provided in Source data 1. This data was used to generate the graphs shown in the paper.Detailed PCR conditions are detailed in the Materials and methods section and were published in a recent paper. Code is uploaded to GitHub as described in the paper (https://github.com/Joshmoss11/btseq).
Article and author information
Author details
Funding
Award of the National Institute of Psychobiology in Israel and the Israeli Society of Biological Psychiatry
- Asael Lubotzky
Israel Science Foundation
- Yuval Dor
Grail
- Yuval Dor
Award of the National Institute of Psychobiology in Israel and the Israeli Society of Biological Psychiatry
- Ilana Pelov
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was conducted according to protocols approved by the Jerusalem Mental Health Center Institutional Review Board, in accordance with the Declaration of Helsinki (HMO-14-0198).We recruited men and women over 18 years of age, who have developed psychotic symptoms for the first time in their life within the last year and were admitted to the acute psychiatric units of the Jerusalem Mental Health Center in Israel.Blood samples were obtained after the initial stabilization and partial remission of the psychotic symptoms which enabled the patients to give written informed consent for participation in the study. The time achieving stability was different for each individual patient, but the majority stabilized within 4 weeks (79%). The patients were asked to complete a short questionnaire regarding demographic details, current physical condition, the onset of present symptoms and drug use. The recruitment was done following the approval of the study's protocol by the Jerusalem Mental Health Center Institutional Review Board. Patients with acute medical conditions in the week prior to the blood sampling were excluded from the study.31 adult volunteers participated in the study as unpaid healthy controls.
Copyright
© 2022, Lubotzky et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,795
- views
-
- 329
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Genetics and Genomics
Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.
-
- Cell Biology
- Genetics and Genomics
A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.