Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. RV College of Engineering, India
  3. PES University, India

Abstract

Elucidating the design principles of regulatory networks driving cellular decision-making has fundamental implications in mapping and eventually controlling cell-fate decisions. Despite being complex, these regulatory networks often only give rise to a few phenotypes. Previously, we identified two 'teams' of nodes in a small cell lung cancer regulatory network that constrained the phenotypic repertoire and aligned strongly with the dominant phenotypes obtained from network simulations (Chauhan et al., 2021). However, it remained elusive whether these 'teams' exist in other networks, and how do they shape the phenotypic landscape. Here, we demonstrate that five different networks of varying sizes governing epithelial-mesenchymal plasticity comprised of two 'teams' of players - one comprised of canonical drivers of epithelial phenotype and the other containing the mesenchymal inducers. These 'teams' are specific to the topology of these regulatory networks and orchestrate a bimodal phenotypic landscape with the epithelial and mesenchymal phenotypes being more frequent and dynamically robust to perturbations, relative to the intermediary/hybrid epithelial/ mesenchymal ones. Our analysis reveals that network topology alone can contain information about corresponding phenotypic distributions, thus obviating the need to simulate them. We propose 'teams' of nodes as a network design principle that can drive cell-fate canalization in diverse decision-making processes.

Data availability

The current manuscript is a computational study. All raw numerical data used to generate the graphs is available at Dryad

The following data sets were generated
    1. Jolly MJ
    2. et al
    (2022) Data from: v
    Dryad Digital Repository, doi:10.5061/dryad.ncjsxksz7.

Article and author information

Author details

  1. Kishore Hari

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Varun Ullanat

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Archana Balasubramanian

    Department of Biotechnology, PES University, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Aditi Gopalan

    Department of Biotechnology, RV College of Engineering, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Mohit Kumar Jolly

    Centre for BioSystems Science and Engineering, Indian Institute of Science Bangalore, Bengaluru, India
    For correspondence
    mkjolly@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6631-2109

Funding

Science and Engineering Research Board (SB/S2/RJN-049/2018)

  • Mohit Kumar Jolly

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Hari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,741
    views
  • 374
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kishore Hari
  2. Varun Ullanat
  3. Archana Balasubramanian
  4. Aditi Gopalan
  5. Mohit Kumar Jolly
(2022)
Landscape of epithelial mesenchymal plasticity as an emergent property of coordinated teams in regulatory networks
eLife 11:e76535.
https://doi.org/10.7554/eLife.76535

Share this article

https://doi.org/10.7554/eLife.76535

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.