Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells

  1. Anna Leabourn Boss  Is a corresponding author
  2. Tanvi Damani
  3. Tayla J Wickman
  4. Larry W Chamley
  5. Joanna L James
  6. Anna ES Brooks
  1. Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
  2. School of Biological Sciences, University of Auckland, New Zealand
  3. Maurice Wilkins Centre, University of Auckland, New Zealand
7 figures, 5 tables and 1 additional file

Figures

Placental villus structure and specificity of markers used to exclude unwanted cell populations.

(A) Placental villous morphology and plane of section, (B) haematoxylin and eosin staining of a thin section though a placental villus (7.1 weeks), localisation of (C) β4 integrin (red) to cytotrophoblasts and (E) CD144 (red) and CD31 (green) to blood vessels (white arrows) in placental villus sections confirmed antibody specificity. No fluorescence is seen in negative IgG controls (D, F) run simultaneously. Nuclei are counterstained with DAPI (blue). Scale bar = 100 µm. Rendered images in (A) have been acquired from Biorender.com.

Categorisation of placental villus core subsets using Panel One markers.

(A) Samples were gated to exclude debris, doublets, dead cells, hematopoietic cells (CD45+ and CD235a+), and cytotrophoblasts (β4 integrin). (B) Marker expression was used to categorise five subsets that were overlaid onto viSNE plots generated in Cytobank. (C) The average percentage contribution of each subset is presented as a pie chart. (D) A scatter plot with bars depicting the mean percentage of CD73+CD90+ cells from villous core cells across first trimester analysed on an Aria II (n=24, black) or an Aurora spectral analyser (n=5, red). Error bars represent the standard deviation of the mean.

Phenotypic characterisation of villous core subsets.

(A) The gating strategy used to identify subsets (CD31+CD34+, CD73+CD90+, perivascular cells, podoplanin+CD36+ and CD26+CD90+), and (B) heat maps comparing the expression of specific antigens between subsets (n=5).

Figure 4 with 2 supplements
In vitro culture of CD73+CD90+ and podoplanin+CD36+ cells.

(A) FACS sorting was used to isolate CD73+CD90+ and podoplanin+CD36+ cells from placental villous core cells (n=3). (B) Morphology and phenotype of CD73+CD90+ cells after 7 days in culture. (C) Phenotype of podoplanin+CD36+ cells after 7 days in culture. (D) CD146 and CD142 expression on CD73+CD90+ analysed with Panel One (day 0, n=5) or at 7 days after culture (n=3). (E) CD146 and CD142 expression on podoplanin+CD36+ cells analysed with Panel One (day 0, n=5) or at 7 days after culture (n=3). (F) Isolation of explant-derived pMSCs, and morphology and phenotype of passaged pMSCs (n=3). Error bars = standard error of the mean and scale bar = 100 µm.

Figure 4—figure supplement 1
Representative 2-dimensional flow cytometry plots displaying the phenotype of FACS sorted CD73+CD90+ and podoplanin+CD36+ cells after 7 days culture in vitro (n=3), and explant isolated pMSCs after culture in vitro (n=3, p2-6).
Figure 4—figure supplement 2
Flow cytometry histograms displaying the phenotype of FACS sorted CD73+CD90+ and podoplanin+CD36+ cells after 7 days culture in vitro (n=3), and explant isolated pMSCs after culture in vitro (n=3, p2-6).
CD73+CD90+ and podoplanin+CD36+ cells upregulate markers consistent with contractile cells.

(A) FACS sorting was used to isolate CD73+CD90+ and podoplanin+CD36+ cells from placental villous core digests (n=3). CD73+CD90+ (B) and podoplanin+CD36+ (I) cell expression of αSMA (C, F, J, M), calponin (D, G, K, H) or MYH-11 (E, H, L, O) following 7 days of culture in advanced-DMEM/F12 or EGM-2. Irrelevant mouse IgG (P) and rabbit IgG (Q) were used as negative controls. Decidual sections containing spiral arteries with intact smooth muscle layers were used as positive controls for staining (R–T). Scale bar = 100 µm.

Schematic diagram demonstrating the enzymatic digestion process used to obtain a single-cell suspension of placental villous core cells for flow cytometry analysis.
Representative 2-dimensional flow cytometry plots displaying the gating strategy used to assess the proportion of extravillous trophoblasts (HLAG +cells) in villous core digests.

(A) Villous core cells and, (B) cells from the first digest washing steps known to contain extravillous trophoblasts were used as a positive control.

Tables

Table 1
Antigens included in Panel One and their functional roles with respect to the villous core.

Antigens are grouped by cell type (grey and white boxes).

AntigenFull name/sFunctional capacity/relevanceReferences
ITGβ4/CD104β4 integrinCell adhesion molecule that uniquely identifies cytotrophoblasts in the placenta.James et al., 2015
CD45Protein tyrosine phosphatase, receptor type, C. lymphocyte common antigenExpressed on all nucleated haematopoietic cells.Hermiston et al., 2003
HLA-DRHuman Leukocyte Antigen – DR isotypeExpressed by antigen presenting cells i.e. macrophages, MHC class II cell surface receptor, involved in antigen presentation and adaptive immunity,Cruz-Tapias et al., 2013
CD235a/GPAGlycophorin ARed blood cell marker, identifies early emerging RBCs/erythroblasts from haemogenic endotheliumGarcia-Alegria et al., 2018; Mao et al., 2016
CD41Integrin alpha-IIbPlatelet marker. Expressed by earliest emerging haematopoietic cells from haemogenic endotheliumGarcia-Alegria et al., 2018; Li et al., 2005
CD117/cKITMast/stem cell growth factor receptorReceptor expressed on haematopoietic stem cells and involved in their differentiationRönnstrand, 2004
CD144 /VE-cadherinVascular endothelial cadherinEndothelial cell-cell adherens junctional marker, stabilises vessels, inhibits vascular growth, regulates vascular permeability.Giannotta et al., 2013
CD34Haematopoietic Progenitor Cell AntigenExpressed by haematopoietic and vascular progenitors and adipose-derived MSCs. Transmembrane phosphoglycoprotein, thought to identify early placental progenitorsBrooks et al., 2020; Sidney et al., 2014; Yoder, 2009
CD31/PECAM1Platelet endothelial cell adhesion moleculeExpressed by endothelial cells, platelets, macrophages and Kupffer cells, granulocytes, lymphocytes, megakaryocytes. Adhesion molecule found at endothelial intercellular junctions.Marelli-Berg et al., 2013
VEGFR2/KDRVascular Endothelial Growth Factor Receptor 2/Kinase Insert Domain ReceptorExpressed by endothelial cells and thought to identify placental core progenitors. Receptor for angiogenic VEGF, involved in vasculogenesis and angiogenesis.Demir et al., 2007
CD54/ICAM1Intercellular Adhesion Molecule 1Expressed at low levels on endothelial cells, monocytes and lymphocytes. Increased expression in response to inflammatory cytokines.Hubbard and Rothlein, 2000
CD36/FATPlatelet glycoprotein 4/fatty acid translocaseExpressed by microvascular endothelial cells, and fibroblasts. Has an anti-angiogenic effect via binding Thrombospondin 1. Involved in fatty acid uptake.Dye et al., 2001; Heinzelmann et al., 2018; Silverstein and Febbraio, 2009
CD90 /Thy-1Thymocyte differentiation antigen 1Expressed by MSCs, haematopoietic stem cells, fibroblasts, myofibroblasts.Viswanathan et al., 2019
CD73 /NT5E Ecto-5′-nucleotidaseExpressed by MSCs and endothelial cells. Works with CD39 to convert extracellular ATP to adenosine to create immunosuppressive effect.Roh et al., 2020; Viswanathan et al., 2019
CD39 /NTPDaseEctonucleoside triphosphate diphosphohydrolase-1Upregulated by MSCs to suppress lymphocyte activation. Immunosuppressive actions via the conversion of extracellular ATP (inflammatory) into adenosine (anti-inflammatory)Saldanha-Araujo et al., 2011; Zhao et al., 2017
CD55/DAFDecay-accelerating factorExpressed by MSCs. Complement regulatory protein, inhibits C3 convertases thereby creating a threshold for complement activation, increased expression correlated with evasion of innate immune systemRuiz-Argüelles and Llorente, 2007; Soland et al., 2013
CD271 /NGFR / p75NTRLow-affinity Nerve Growth Factor ReceptorUsed in MSC and pericyte identification. Hypothesised to identify “stem-cell” or progenitor populations with superior differentiation and colony forming capacity.Barilani et al., 2018; Kumar et al., 2017
CD146/MCAMMelanoma cell adhesion moleculeAdhesion molecule expressed by pericytes, endothelial cells and smooth muscle cells. Involved in the regulation of angiogenesis and vessel permeability.Crisan et al., 2009; Leroyer et al., 2019
CD248Endosialin/ tumor endothelial marker 1Pericyte and stromal cell marker. Involved in cell–cell adhesion, and host defence.Lax et al., 2010; Tomkowicz et al., 2010
CD142/TFTissue Factor/ thromboplastinExpression correlated with pericytes, smooth muscle and fibroblasts. Activates blood clotting after injury, located outside the vasculature,Abe et al., 1999; Morrissey, 2004
CD26/DDP4Dipeptidyl peptidase-4, adenosine deaminase complexing protein 2Expressed by many tissues; T-cells, epithelial cells, ESCs, progenitor cells, placental myofibroblasts. Serine protease that cleaves a range of chemokines. Downregulation is correlated with increased stromal/myofibroblast proliferation.Kohnen et al., 1996; Mezawa et al., 2019; Ou et al., 2013
PDPNPodoplaninLymphatic vascular marker. Expression is correlated with increased fibroblast migration. Binds to CLEC-2 receptor on platelets.Astarita et al., 2012; Suchanski et al., 2017
Table 2
Primary conjugated antibodies used to confirm specificity of cytotrophoblast or endothelial markers.
AntigenFluorophoreCloneDilutionSupplier
β4 integrinFITC/APC450-9D1:200Thermofisher
CD144BV42155–7 H11:200BD
CD31BV480WM591:200BD
Table 3
Panel One designed to assess villous core cells on a 3 L Cytek Aurora.
AntibodyFluorophoreCloneFlow cytometry Dose (μL)Reference controlSupplier
CD55BB515IA100.6Villous core cellsBeckman Coulter
β4 integrinFITC450-9D0.6Villous core cellsThermofisher
CD34PerCP5810.3Villous core cellsBD
CD36PerCpVio700REA7600.6Villous core cellsMiltenyi Biotec
VEGFR2PE7D4-60.6Villous core cellsBiolegend
CD271PE-CF594C40-14570.6Stromal vascular fractionBiolegend
CD142BB700HTF-11.25Villous core cellsBD
CD26PE/Cy5BA5b0.15Villous core cellsBD
PDPNPE/Cy7NC-080.3Villous core cellsBD
CD248Alexa Fluor 647B1/350.6Stromal vascular fractionBD
CD41APCHIP80.3BeadsBD
CD90Alexa7005E100.6Villous core cellsBiolegend
CD39BUV737TU661.25BeadsBD
ICAM1APC/Fire750HA582.5Stromal vascular fractionBiolegend
CD144BV42155–7 H11.25Villous core cellsBD
CD235aPacific BlueH12640.3Villous core cellsBD
CD31BV480WM590.3Villous core cellsBD
CD45Krome-OrangeB618400.3Villous core cellsBeckman Coulter
CD146BV605PIH120.3Villous core cellsBD
CD117BV650104D20.3BeadsBD
HLADRBV750L2430.3Villous core cellsBD
CD73BV785AD20.3Villous core cellsBD
Table 3—source data 1

All antibodies used in Panel One were titrated on placental villous core digest cells.

https://cdn.elifesciences.org/articles/76622/elife-76622-table3-data1-v2.pdf
Table 3—source data 2

Titration of additional antibodies, not contained in Panel One, required for the FACS sorting with Panel Two.

https://cdn.elifesciences.org/articles/76622/elife-76622-table3-data2-v2.pdf
Table 3—source data 3

Representative images depicting how forward scatter (FSC) (A) or addition of cell-specific antibodies improved detection of appropriate doses for specific placental populations.

(B) β4 integrin+ cells were negative for podoplanin but demonstrated an unspecific shift in expression at higher doses. (C) Removal of β4 integrin+ improved detection of the optimal podoplanin dose.

https://cdn.elifesciences.org/articles/76622/elife-76622-table3-data3-v2.pdf
Table 4
Composition of Panel Two.

This panel was developed to sort CD73 + CD90 + and podoplanin + CD36 + cells from placental villous core using a BD FACS Aria II.

AntibodyFluorophoreCloneDose (μL)Supplier
CD45FITCHI300.3BD
PDPNPENC-080.3Biolegend
CD26PE/Cy7BA5b0.6BD
CD271PE/Dazzle 594C40-14570.6BD
CD144PerCP-5.555–7 H10.6BD
CD90Alexa7005E100.6Biolegend
CD36APC-Cy75–2710.6Biolegend
β4 integrinAPC450-9D0.6Thermofisher
CD31BV480WM590.3BD
CD73BV785AD20.3BD
CD34BUV3955811.25BD
Table 5
Composition of Panel Three.

This panel was designed to assess the phenotype of placental populations after culture in vitro using a three laser Cytek Aurora.

AntibodyFluorophoreCloneDoseSupplier
CD34PerCP5810.3BD
CD36PerCpVio700REA7600.6Miltenyi Biotec
VEGFR2PE7D4-60.6Biolegend
CD271PE/Dazzle 594C40-14570.6Biolegend
CD142BB700HTF-11.25BD
CD26PE/Cy5BA5b0.15BD
PDPNPE/Cy7NC-080.3BD
CD90Alexa7005E100.6Biolegend
CD144BV42155–7 H11.25BD
CD31BV480WM590.3BD
CD45Krome-OrangeB618400.3Beckman Coulter
CD146BV605PIH120.3BD
HLADRBV750L2430.3BD
CD73BV785AD20.3BD

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Leabourn Boss
  2. Tanvi Damani
  3. Tayla J Wickman
  4. Larry W Chamley
  5. Joanna L James
  6. Anna ES Brooks
(2022)
Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells
eLife 11:e76622.
https://doi.org/10.7554/eLife.76622