Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA)

  1. Thomas George Wade Graham
  2. John Joseph Ferrie III
  3. Gina M Dailey
  4. Robert Tjian  Is a corresponding author
  5. Xavier Darzacq  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

Single-molecule imaging provides a powerful way to study biochemical processes in live cells, yet it remains challenging to track single molecules while simultaneously detecting their interactions. Here we describe a novel property of rhodamine dyes, proximity-assisted photoactivation (PAPA), in which one fluorophore (the 'sender') can reactivate a second fluorophore (the 'receiver') from a dark state. PAPA requires proximity between the two fluorophores, yet it operates at a longer average intermolecular distance than Förster resonance energy transfer (FRET). We show that PAPA can be used in live cells both to detect protein-protein interactions and to highlight a sub-population of labeled protein complexes in which two different labels are in proximity. In proof-of-concept experiments, PAPA detected the expected correlation between androgen receptor self-association and chromatin binding at the single-cell level. These results establish a new way in which a photophysical property of fluorophores can be harnessed to study molecular interactions in single-molecule imaging of live cells.

Data availability

Source data for Fig. 2-5 are included in an accompanying zip file.

Article and author information

Author details

  1. Thomas George Wade Graham

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    Thomas George Wade Graham, is an inventor on a pending patent application (PCT/US2021/062616) related to the use of PAPA as a molecular proximity sensor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5189-4313
  2. John Joseph Ferrie III

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Gina M Dailey

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8988-963X
  4. Robert Tjian

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    tijcal@berkeley.edu
    Competing interests
    Robert Tjian, is a member of eLife's Board of Directors.Is a co-founder of Eikon Therapeutics, Inc.Is an inventor on a pending patent application (PCT/US2021/062616) related to the use of PAPA as a molecular proximity sensor..
  5. Xavier Darzacq

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    darzacq@berkeley.edu
    Competing interests
    Xavier Darzacq, is a co-founder of Eikon Therapeutics, Inc.Is an inventor on a pending patent application (PCT/US2021/062616) related to the use of PAPA as a molecular proximity sensor..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2537-8395

Funding

Howard Hughes Medical Institute

  • Robert Tjian

Jane Coffin Childs Memorial Fund for Medical Research

  • Thomas George Wade Graham

Life Sciences Research Foundation

  • John Joseph Ferrie III

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Graham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,725
    views
  • 1,285
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Thomas George Wade Graham
  2. John Joseph Ferrie III
  3. Gina M Dailey
  4. Robert Tjian
  5. Xavier Darzacq
(2022)
Detecting molecular interactions in live-cell single-molecule imaging with proximity-assisted photoactivation (PAPA)
eLife 11:e76870.
https://doi.org/10.7554/eLife.76870

Share this article

https://doi.org/10.7554/eLife.76870

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.