Sociosexual behavior requires both activating and repressive roles of Tfap2e/AP-2ε in vomeronasal sensory neurons

Abstract

Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2e expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the transcription factor Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 and 6.The scRNA-seq data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession number GSE192746 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE192746). We also utilized previously published data from (Katreddi et al., 2021), available through GEO series accession number GSE190330 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190330).The data from this CUT&RUN experiment has been deposited into the NCBI's Expression Omnibus and are accessible through GEO series accession number GSE193139 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193139).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jennifer M Lin

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9197-0816
  2. Tyler A Mitchell

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Megan Rothstein

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alison Pehl

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ed Zandro M Taroc

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Raghu R Katreddi

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Katherine E Parra

    Department of Psychology, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Damian G Zuloaga

    Department of Psychology, University at Albany, State University of New York, Albany, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Marcos Simoes-Costa

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1452-7068
  10. Paolo Emanuele Forni

    Department of Biological Sciences, University at Albany, State University of New York, Albany, United States
    For correspondence
    pforni@albany.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6547-3464

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01-HD097331/HD/NICHD)

  • Paolo Emanuele Forni

National Institute on Deafness and Other Communication Disorders (R01-DC017149)

  • Paolo Emanuele Forni

National Institute of Dental and Craniofacial Research (R01DE028576)

  • Marcos Simoes-Costa

National Institute of Mental Health (R15-MH118692)

  • Damian G Zuloaga

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse studies were performed according to the approved Institutional Animal Care and Use Committee (IACUC) protocols (#20-002, #19-001) of the University at Albany.

Copyright

© 2022, Lin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,292
    views
  • 211
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer M Lin
  2. Tyler A Mitchell
  3. Megan Rothstein
  4. Alison Pehl
  5. Ed Zandro M Taroc
  6. Raghu R Katreddi
  7. Katherine E Parra
  8. Damian G Zuloaga
  9. Marcos Simoes-Costa
  10. Paolo Emanuele Forni
(2022)
Sociosexual behavior requires both activating and repressive roles of Tfap2e/AP-2ε in vomeronasal sensory neurons
eLife 11:e77259.
https://doi.org/10.7554/eLife.77259

Share this article

https://doi.org/10.7554/eLife.77259

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Olivia B Taylor, Nicholas DeGroff ... Andy J Fischer
    Research Article

    The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

    1. Developmental Biology
    Kayleigh Bozon, Hartmut Cuny ... Sally L Dunwoodie
    Research Article

    Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.