Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li  Is a corresponding author
  8. Huiting Cui  Is a corresponding author
  9. Jing Yuan  Is a corresponding author
  1. Xiamen University, China
  2. Xiamen Center for Disease Control and Prevention, China
  3. Mahidol University, Thailand

Abstract

Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The Inner Membrane Complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labelling to compile the proteome of the schizont IMC of rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing IMC localization of proteins during the schizont development.

Data availability

The Mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data identifier PXD028193. All other relevant data in this study are submitted as supplementary source files.

The following data sets were generated

Article and author information

Author details

  1. Pengge Qian

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xu Wang

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chuan-Qi Zhong

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiaxu Wang

    Xiamen Center for Disease Control and Prevention, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengya Cai

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wang Nguitragool

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  7. Jian Li

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    jianli_204@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Huiting Cui

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    huitingcui@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing Yuan

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    yuanjing@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-9143

Funding

National Natural Science Foundation of China (32170427,31970387,31872214)

  • Jing Yuan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed by approved protocols (XMULAC20140004) by the Committee for Care and Use of Laboratory Animals of Xiamen University. The ICR mice (female, 5 to 6 weeks old) were purchased from the Animal Care Center of Xiamen University

Copyright

© 2022, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,763
    views
  • 465
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li
  8. Huiting Cui
  9. Jing Yuan
(2022)
Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite
eLife 11:e77447.
https://doi.org/10.7554/eLife.77447

Share this article

https://doi.org/10.7554/eLife.77447

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Flavia A Zanetti, Ignacio Fernandez ... Laura Ruth Delgui
    Research Article

    Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.