Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li  Is a corresponding author
  8. Huiting Cui  Is a corresponding author
  9. Jing Yuan  Is a corresponding author
  1. Xiamen University, China
  2. Xiamen Center for Disease Control and Prevention, China
  3. Mahidol University, Thailand

Abstract

Malaria is caused by infection of the erythrocytes by the parasites Plasmodium. Inside the erythrocytes, the parasites multiply via schizogony, an unconventional cell division mode. The Inner Membrane Complex (IMC), an organelle located beneath the parasite plasma membrane, serving as the platform for protein anchorage, is essential for schizogony. So far, complete repertoire of IMC proteins and their localization determinants remain unclear. Here we used biotin ligase (TurboID)-based proximity labelling to compile the proteome of the schizont IMC of rodent malaria parasite Plasmodium yoelii. In total, 300 TurboID-interacting proteins were identified. 18 of 21 selected candidates were confirmed to localize in the IMC, indicating good reliability. In light of the existing palmitome of Plasmodium falciparum, 83 proteins of the P. yoelii IMC proteome are potentially palmitoylated. We further identified DHHC2 as the major resident palmitoyl-acyl-transferase of the IMC. Depletion of DHHC2 led to defective schizont segmentation and growth arrest both in vitro and in vivo. DHHC2 was found to palmitoylate two critical IMC proteins CDPK1 and GAP45 for their IMC localization. In summary, this study reports an inventory of new IMC proteins and demonstrates a central role of DHHC2 in governing IMC localization of proteins during the schizont development.

Data availability

The Mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data identifier PXD028193. All other relevant data in this study are submitted as supplementary source files.

The following data sets were generated

Article and author information

Author details

  1. Pengge Qian

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Xu Wang

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chuan-Qi Zhong

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jiaxu Wang

    Xiamen Center for Disease Control and Prevention, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengya Cai

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wang Nguitragool

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  7. Jian Li

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    jianli_204@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  8. Huiting Cui

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    cuihuiting@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  9. Jing Yuan

    Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
    For correspondence
    yuanjing@xmu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-9143

Funding

National Natural Science Foundation of China (32170427,31970387,31872214)

  • Jing Yuan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experiments were performed by approved protocols (XMULAC20140004) by the Committee for Care and Use of Laboratory Animals of Xiamen University. The ICR mice (female, 5 to 6 weeks old) were purchased from the Animal Care Center of Xiamen University

Copyright

© 2022, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,790
    views
  • 465
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengge Qian
  2. Xu Wang
  3. Chuan-Qi Zhong
  4. Jiaxu Wang
  5. Mengya Cai
  6. Wang Nguitragool
  7. Jian Li
  8. Huiting Cui
  9. Jing Yuan
(2022)
Inner membrane complex proteomics reveals a palmitoylation regulation critical for intraerythrocytic development of malaria parasite
eLife 11:e77447.
https://doi.org/10.7554/eLife.77447

Share this article

https://doi.org/10.7554/eLife.77447

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.