Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion

  1. William J Allen
  2. Robin A Corey
  3. Daniel W Watkins
  4. A Sofia F Oliveira
  5. Kiel Hards
  6. Gregory M Cook
  7. Ian Collinson  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. University of Oxford, United Kingdom
  3. University of Otago, New Zealand

Abstract

Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.

Data availability

All raw data generated during this study are included as supplementary files, and annotated with the figure they were used in.

Article and author information

Author details

  1. William J Allen

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9513-4786
  2. Robin A Corey

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1820-7993
  3. Daniel W Watkins

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3825-5036
  4. A Sofia F Oliveira

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8753-4950
  5. Kiel Hards

    Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  6. Gregory M Cook

    Department of Microbiology and Immunology, University of Otago, Duneding, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Collinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    ian.collinson@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3931-0503

Funding

Wellcome Trust (104632)

  • William J Allen
  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/S008349/1)

  • Daniel W Watkins
  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/N015126/1)

  • Daniel W Watkins
  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/M003604/1)

  • Robin A Corey
  • Ian Collinson

Biotechnology and Biological Sciences Research Council (BB/I008675/1)

  • William J Allen
  • Ian Collinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Allen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,872
    views
  • 305
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William J Allen
  2. Robin A Corey
  3. Daniel W Watkins
  4. A Sofia F Oliveira
  5. Kiel Hards
  6. Gregory M Cook
  7. Ian Collinson
(2022)
Rate-limiting transport of positively charged arginine residues through the Sec-machinery is integral to the mechanism of protein secretion
eLife 11:e77586.
https://doi.org/10.7554/eLife.77586

Share this article

https://doi.org/10.7554/eLife.77586

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.