Evidence for RNA or protein transport from somatic tissues to the male reproductive tract in mouse

  1. Vera RInaldi
  2. Kathleen Messemer
  3. Kathleen Desevin
  4. Fengyun Sun
  5. Bethany C Berry
  6. Shweta Kukreja
  7. Andrew R Tapper
  8. Amy J Wagers
  9. Oliver J Rando  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Joslin Diabetes Center, United States
  3. Harvard University, United States

Abstract

The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate extreme caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.

Data availability

A representative subset of the raw image data (with supporting metadata) will be made publicly available on acceptance. Source data for gels/blots has been provided.

Article and author information

Author details

  1. Vera RInaldi

    Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Kathleen Messemer

    Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States
    Competing interests
    No competing interests declared.
  3. Kathleen Desevin

    Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  4. Fengyun Sun

    Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Bethany C Berry

    Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Shweta Kukreja

    Department of BiochemisDepartment of Biochemistry and Molecular Biotechnologytry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  7. Andrew R Tapper

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  8. Amy J Wagers

    Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, United States
    Competing interests
    Amy J Wagers, is a scientific advisor for Kate Therapeutics and Frequency Therapeutics and a cofounder, advisor, and holder of private equity in Elevian, Inc., which also provides sponsored research to the Wagers Lab. Is a co-inventor on patents that include the use of AAVs for research and therapeutic applications (application numbers: 17/614,327, 63/332,655, 17/743,444, 63/344,328, 63/388,920)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0066-0485
  9. Oliver J Rando

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Oliver.Rando@umassmed.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1516-9397

Funding

Templeton World Charity Foundation (61350)

  • Vera RInaldi
  • Bethany C Berry
  • Shweta Kukreja
  • Oliver J Rando

National Institutes of Health (R01HD080224)

  • Kathleen Desevin
  • Fengyun Sun
  • Oliver J Rando

National Institutes of Health (R01DA047678)

  • Andrew R Tapper

National Institutes of Health (DP1AG063419)

  • Kathleen Messemer
  • Amy J Wagers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal use was approved by the Institutional Animal Care and Use Committees of UMass Chan Medical School and Harvard Faculty of Arts and Sciences, under protocol PROTO202100029 to Dr. Oliver Rando and protocol 29014 awarded to Dr. Amy Wagers.

Copyright

© 2023, RInaldi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,912
    views
  • 269
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vera RInaldi
  2. Kathleen Messemer
  3. Kathleen Desevin
  4. Fengyun Sun
  5. Bethany C Berry
  6. Shweta Kukreja
  7. Andrew R Tapper
  8. Amy J Wagers
  9. Oliver J Rando
(2023)
Evidence for RNA or protein transport from somatic tissues to the male reproductive tract in mouse
eLife 12:e77733.
https://doi.org/10.7554/eLife.77733

Share this article

https://doi.org/10.7554/eLife.77733

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article

    The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.