Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities

  1. Dakota E McCoy
  2. Benjamin Goulet-Scott  Is a corresponding author
  3. Weilin Meng
  4. Bulent Furkan Atahan
  5. Hana Kiros
  6. Misako Nishino
  7. John Kartesz
  1. Stanford University, United States
  2. Harvard University, United States
  3. Independent Researcher, United States
  4. Worcester Polytechnic Institute, United States
  5. The Biota of North America Program (BONAP), United States

Abstract

Sustainable cities depend on urban forests. City trees-pillars of urban forests - improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., 'native'). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., 'native' trees) comprise 0.51%-87.3% (median=45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees and socio-demographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees.

Data availability

All data and code are available in the main text or the supplementary materials. The datasheets of city tree information from 63 cities Figure 1-source data 1 (63 .csv files) have been uploaded to Dryad: https://doi.org/10.5061/dryad.2jm63xsrf.

The following data sets were generated

Article and author information

Author details

  1. Dakota E McCoy

    Department of Materials Science and Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8383-8084
  2. Benjamin Goulet-Scott

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    bgoulet@g.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2004-6586
  3. Weilin Meng

    Independent Researcher, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bulent Furkan Atahan

    Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hana Kiros

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Misako Nishino

    The Biota of North America Program (BONAP), Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John Kartesz

    The Biota of North America Program (BONAP), Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (Postdoctoral Research Fellowships in Biology,2109465)

  • Dakota E McCoy

National Science Foundation (Research Experience for Undergraduates (REU),1757780)

  • Bulent Furkan Atahan

Stanford University (Science Fellowship)

  • Dakota E McCoy

The Franklin Delano Roosevelt Foundation (Summer Research Grant)

  • Hana Kiros

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, McCoy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,965
    views
  • 318
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dakota E McCoy
  2. Benjamin Goulet-Scott
  3. Weilin Meng
  4. Bulent Furkan Atahan
  5. Hana Kiros
  6. Misako Nishino
  7. John Kartesz
(2022)
Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities
eLife 11:e77891.
https://doi.org/10.7554/eLife.77891

Share this article

https://doi.org/10.7554/eLife.77891

Further reading

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.

    1. Ecology
    Mercury Shitindo
    Insight

    Tracking wild pigs with GPS devices reveals how their social interactions could influence the spread of disease, offering new strategies for protecting agriculture, wildlife, and human health.