Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities

  1. Dakota E McCoy
  2. Benjamin Goulet-Scott  Is a corresponding author
  3. Weilin Meng
  4. Bulent Furkan Atahan
  5. Hana Kiros
  6. Misako Nishino
  7. John Kartesz
  1. Stanford University, United States
  2. Harvard University, United States
  3. Independent Researcher, United States
  4. Worcester Polytechnic Institute, United States
  5. The Biota of North America Program (BONAP), United States

Abstract

Sustainable cities depend on urban forests. City trees-pillars of urban forests - improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset of N=5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., 'native'). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., 'native' trees) comprise 0.51%-87.3% (median=45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees and socio-demographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees.

Data availability

All data and code are available in the main text or the supplementary materials. The datasheets of city tree information from 63 cities Figure 1-source data 1 (63 .csv files) have been uploaded to Dryad: https://doi.org/10.5061/dryad.2jm63xsrf.

The following data sets were generated

Article and author information

Author details

  1. Dakota E McCoy

    Department of Materials Science and Engineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8383-8084
  2. Benjamin Goulet-Scott

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    For correspondence
    bgoulet@g.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2004-6586
  3. Weilin Meng

    Independent Researcher, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bulent Furkan Atahan

    Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hana Kiros

    Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Misako Nishino

    The Biota of North America Program (BONAP), Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John Kartesz

    The Biota of North America Program (BONAP), Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (Postdoctoral Research Fellowships in Biology,2109465)

  • Dakota E McCoy

National Science Foundation (Research Experience for Undergraduates (REU),1757780)

  • Bulent Furkan Atahan

Stanford University (Science Fellowship)

  • Dakota E McCoy

The Franklin Delano Roosevelt Foundation (Summer Research Grant)

  • Hana Kiros

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, McCoy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,057
    views
  • 334
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dakota E McCoy
  2. Benjamin Goulet-Scott
  3. Weilin Meng
  4. Bulent Furkan Atahan
  5. Hana Kiros
  6. Misako Nishino
  7. John Kartesz
(2022)
Species clustering, climate effects, and introduced species in 5 million city trees across 63 US cities
eLife 11:e77891.
https://doi.org/10.7554/eLife.77891

Share this article

https://doi.org/10.7554/eLife.77891

Further reading

    1. Ecology
    2. Evolutionary Biology
    Vendula Bohlen Šlechtová, Tomáš Dvořák ... Joerg Bohlen
    Research Article

    Eurasia has undergone substantial tectonic, geological, and climatic changes throughout the Cenozoic, primarily associated with tectonic plate collisions and a global cooling trend. The evolution of present-day biodiversity unfolded in this dynamic environment, characterised by intricate interactions of abiotic factors. However, comprehensive, large-scale reconstructions illustrating the extent of these influences are lacking. We reconstructed the evolutionary history of the freshwater fish family Nemacheilidae across Eurasia and spanning most of the Cenozoic on the base of 471 specimens representing 279 species and 37 genera plus outgroup samples. Molecular phylogeny using six genes uncovered six major clades within the family, along with numerous unresolved taxonomic issues. Dating of cladogenetic events and ancestral range estimation traced the origin of Nemacheilidae to Indochina around 48 mya. Subsequently, one branch of Nemacheilidae colonised eastern, central, and northern Asia, as well as Europe, while another branch expanded into the Burmese region, the Indian subcontinent, the Near East, and northeast Africa. These expansions were facilitated by tectonic connections, favourable climatic conditions, and orogenic processes. Conversely, aridification emerged as the primary cause of extinction events. Our study marks the first comprehensive reconstruction of the evolution of Eurasian freshwater biodiversity on a continental scale and across deep geological time.

    1. Ecology
    2. Neuroscience
    Kathleen T Quach, Gillian A Hughes, Sreekanth H Chalasani
    Research Article

    Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence—how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat—–suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.