Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang  Is a corresponding author
  1. IRCCS Humanitas Research Hospital, Italy
  2. Institute of Genetic and Biomedical Research, Italy
  3. University of California, San Diego, United States
  4. University of Florence, Italy
  5. University of North Carolina at Chapel Hill, United States
  6. Goethe University Hospital, Germany
  7. University of Münster, Germany
  8. University G d' Annunzio of Chieti, Italy

Abstract

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.

Data availability

All data generated and analysed during this study are included in the manuscript and figure supplements. Source Data files have been provided for all figures.

Article and author information

Author details

  1. Giuseppina Mastrototaro

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierluigi Carullo

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Jianlin Zhang

    School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Beatrice Scellini

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicoletta Piroddi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Simona Nemska

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Carmela Filomena

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Simone Serio

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7294-2094
  9. Carol A Otey

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chiara Tesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabian Emrich

    Department of Cardiac Surgery, Goethe University Hospital, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Wolfgang A Linke

    Institute of Physiology II, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0801-3773
  13. Corrado Poggesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Simona Boncompagni

    Department of Neuroscience, Imaging and Clinical Sciences, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-5069
  15. Marie-Louise Bang

    Institute of Genetic and Biomedical Research, Milan, Italy
    For correspondence
    marie-louise.bang@cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8859-5034

Funding

Fondazione Telethon (GGP12282)

  • Marie-Louise Bang

Ministero dell'Università e della Ricerca (2010R8JK2X_006)

  • Marie-Louise Bang

Horizon 2020 Framework Programme (777204)

  • Corrado Poggesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Italian Ministry of Health and performed in full compliance with the rules and regulations of the European Union (Directive 2010/63/EU of the European Parlia- ment) and Italy (Council of 22 September 2010; directive from the Italian Ministry of Health) on the protection of animals used for scientific purposes.

Human subjects: Human myocardial biopsies from cardiomyopathy patients were obtained from Leipzig Heart Center, Germany following approval by the institutional review board (protocol #240/16-ek) and signed informed consent from the patients according to the principles of the Declaration of Helsinki. Myocardial biopsies from healthy donors rejected for transplantation were obtained from Careggi University Hospital, Florence, Italy (protocol #2006/0024713; renewed May 2009).

Copyright

© 2023, Mastrototaro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 861
    views
  • 152
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang
(2023)
Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities
eLife 12:e78629.
https://doi.org/10.7554/eLife.78629

Share this article

https://doi.org/10.7554/eLife.78629

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.