Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang  Is a corresponding author
  1. IRCCS Humanitas Research Hospital, Italy
  2. Institute of Genetic and Biomedical Research, Italy
  3. University of California, San Diego, United States
  4. University of Florence, Italy
  5. University of North Carolina at Chapel Hill, United States
  6. Goethe University Hospital, Germany
  7. University of Münster, Germany
  8. University G d' Annunzio of Chieti, Italy

Abstract

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.

Data availability

All data generated and analysed during this study are included in the manuscript and figure supplements. Source Data files have been provided for all figures.

Article and author information

Author details

  1. Giuseppina Mastrototaro

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierluigi Carullo

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Jianlin Zhang

    School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Beatrice Scellini

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicoletta Piroddi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Simona Nemska

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Carmela Filomena

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Simone Serio

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7294-2094
  9. Carol A Otey

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chiara Tesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabian Emrich

    Department of Cardiac Surgery, Goethe University Hospital, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Wolfgang A Linke

    Institute of Physiology II, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0801-3773
  13. Corrado Poggesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Simona Boncompagni

    Department of Neuroscience, Imaging and Clinical Sciences, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-5069
  15. Marie-Louise Bang

    Institute of Genetic and Biomedical Research, Milan, Italy
    For correspondence
    marie-louise.bang@cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8859-5034

Funding

Fondazione Telethon (GGP12282)

  • Marie-Louise Bang

Ministero dell'Università e della Ricerca (2010R8JK2X_006)

  • Marie-Louise Bang

Horizon 2020 Framework Programme (777204)

  • Corrado Poggesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Italian Ministry of Health and performed in full compliance with the rules and regulations of the European Union (Directive 2010/63/EU of the European Parlia- ment) and Italy (Council of 22 September 2010; directive from the Italian Ministry of Health) on the protection of animals used for scientific purposes.

Human subjects: Human myocardial biopsies from cardiomyopathy patients were obtained from Leipzig Heart Center, Germany following approval by the institutional review board (protocol #240/16-ek) and signed informed consent from the patients according to the principles of the Declaration of Helsinki. Myocardial biopsies from healthy donors rejected for transplantation were obtained from Careggi University Hospital, Florence, Italy (protocol #2006/0024713; renewed May 2009).

Copyright

© 2023, Mastrototaro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 863
    views
  • 154
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang
(2023)
Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities
eLife 12:e78629.
https://doi.org/10.7554/eLife.78629

Share this article

https://doi.org/10.7554/eLife.78629

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.