Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis

Abstract

The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid (PDO) screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wavelike patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files have been provided for all main figures

Article and author information

Author details

  1. Kelvin W Pond

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Julia M Morris

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olga Alkhimenok

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Reeba P Varghese

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Carly C Cabel

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan A Ellis

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jayati Chakrabarti

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yana Zavros

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Juanita L Merchant

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Curtis A Thorne

    Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
    For correspondence
    curtisthorne@arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8711-8292
  11. Andrew L Paek

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    apaek@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2835-8544

Funding

National Institutes of Health (GM130864)

  • Andrew L Paek

National Institutes of Health (GM147128)

  • Curtis A Thorne

National Institutes of Health (CA242914)

  • Nathan A Ellis

National Institutes of Health (DK118563)

  • Juanita L Merchant

Wellcome Trust (WT223952/Z/21/Z)

  • Kelvin W Pond

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2021-0772) of the University of Arizona.

Human subjects: All primary colonic organoid cell lines to be used in this study have been anonymized by the Tissue Acquisition and Cellular/Molecular Analysis Shared Resource (TACMASR) at the University of Arizona Cancer Center. TACMASR is an on-campus biorepository to procure, store and retrieve biospecimens in a form that is deidentified and protects the privacy of the donors and confidentiality of the data collected. The individuals from whom the cells originated were resection patients at Banner University Medical Center. All researchparticipants in this proposal receive the cells with de-identified and anonymous labels that cannot trace back to the individual or their families from which they came. Thus, no one involved in this study can access the subject's identities. Therefore, the study is exempt from being considered human subject research.

Copyright

© 2022, Pond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,535
    views
  • 608
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelvin W Pond
  2. Julia M Morris
  3. Olga Alkhimenok
  4. Reeba P Varghese
  5. Carly C Cabel
  6. Nathan A Ellis
  7. Jayati Chakrabarti
  8. Yana Zavros
  9. Juanita L Merchant
  10. Curtis A Thorne
  11. Andrew L Paek
(2022)
Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis
eLife 11:e78837.
https://doi.org/10.7554/eLife.78837

Share this article

https://doi.org/10.7554/eLife.78837

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.