Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis
Abstract
Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for each figure.
Article and author information
Author details
Funding
American Heart Association (Postdoctoral Fellowship,18POST33990339)
- Andrew Kuo
National Heart, Lung, and Blood Institute (R35,HL135821)
- Timothy Hla
National Eye Institute (R01,EY031715)
- Timothy Hla
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendationsin the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All ofthe animals were handled according to approved institutional animal care and use committee(IACUC) protocols (#19-10-4031R) of the Boston Children's Hospital. Every effort was made to minimize suffering.
Copyright
This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Metrics
-
- 1,581
- views
-
- 291
- downloads
-
- 13
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.
-
- Cell Biology
- Immunology and Inflammation
Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.