Abstract

Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of S. cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.

Data availability

The accession number for the Illumina sequencing reported in this paper is Gene Expression Omnibus (GEO): GSE159603.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Mary Couvillion

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Kevin M Harlen

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Kate C Lachance

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  4. Kristine L Trotta

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8166-7696
  5. Erin Smith

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Christian Brion

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  7. Brendan M Smalec

    Department of Genetics, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  8. L Stirling Churchman

    Department of Genetics, Harvard Medical School, Boston, United States
    For correspondence
    churchman@genetics.med.harvard.edu
    Competing interests
    L Stirling Churchman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3888-2574

Funding

National Institutes of Health (R01-HG007173)

  • L Stirling Churchman

National Institutes of Health (F31 HG010570)

  • Kate C Lachance

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Couvillion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,679
    views
  • 634
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mary Couvillion
  2. Kevin M Harlen
  3. Kate C Lachance
  4. Kristine L Trotta
  5. Erin Smith
  6. Christian Brion
  7. Brendan M Smalec
  8. L Stirling Churchman
(2022)
Transcription elongation is finely tuned by dozens of regulatory factors
eLife 11:e78944.
https://doi.org/10.7554/eLife.78944

Share this article

https://doi.org/10.7554/eLife.78944

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.