Abstract

During embryonic development cells acquire identity at the same time as they are proliferating, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to rates of cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single cell RNA-seq in the contexts of self-renewal, priming and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm lineage (PrE). Since ESCs are derived from the Inner Cell Mass of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing subfractions that are primed for either of the two ICM lineages, Epiblast and PrE. These subfractions represent dynamic states that can readily interconvert in culture, and the PrE subfraction is functionally primed for endoderm differentiation. Here we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture conditions promote Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, we find that this change is accompanied by a counter-intuitive increase in G1 length that also appears replicated in vivo. While FGF/ERK signalling is a known key regulator of ESCs and PrE differentiation, we find it is not just responsible for ESCs heterogeneity, but also cell cycle synchronisation, required for the inheritance of similar cell cycles between sisters and cousins. Taken together, our results point to a tight relationship between transcriptional heterogeneity and cell cycle regulation in the context of lineage priming, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.

Data availability

The sc-RNAseq data used in this study has been deposited in the Gene Expression Omnibus and are available under the accession number GSE200534. Previously published Nowotschin et al., 2019 data that were used here are available under accession number GSE123046.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marta Perera

    The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  2. Silas Boye Nissen

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9473-4755
  3. Martin Proks

    The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  4. Sara Pozzi

    The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  5. Rita Soares Monteiro

    The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
  6. Ala Trusina

    Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1945-454X
  7. Joshua M Brickman

    The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
    For correspondence
    Joshua.brickman@sund.ku.dk
    Competing interests
    Joshua M Brickman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1580-7491

Funding

Lundbeckfonden (R198-2015-412)

  • Joshua M Brickman

Danish Agency for Science and Higher Education (DFF- 8020-00100B)

  • Joshua M Brickman

Danish National Research Foundation (DNRF116)

  • Joshua M Brickman

Lundbeckfonden (R286-2018-1534)

  • Marta Perera

Lundbeckfonden (R303-2018-2939)

  • Rita Soares Monteiro

Danish National Research Foundation (DNRF116)

  • Ala Trusina

Novo Nordisk Fonden (NNF21CC0073729)

  • Joshua M Brickman

Novo Nordisk Fonden (NNF17CC002785)

  • Joshua M Brickman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Perera et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,116
    views
  • 327
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marta Perera
  2. Silas Boye Nissen
  3. Martin Proks
  4. Sara Pozzi
  5. Rita Soares Monteiro
  6. Ala Trusina
  7. Joshua M Brickman
(2022)
Transcriptional heterogeneity and cell cycle regulation as central determinants of primitive endoderm priming
eLife 11:e78967.
https://doi.org/10.7554/eLife.78967

Share this article

https://doi.org/10.7554/eLife.78967

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Thi Thom Mac, Teddy Fauquier ... Thierry Brue
    Research Article

    Deficient Anterior pituitary with common Variable Immune Deficiency (DAVID) syndrome results from NFKB2 heterozygous mutations, causing adrenocorticotropic hormone deficiency (ACTHD) and primary hypogammaglobulinemia. While NFKB signaling plays a crucial role in the immune system, its connection to endocrine symptoms is unclear. We established a human disease model to investigate the role of NFKB2 in pituitary development by creating pituitary organoids from CRISPR/Cas9-edited human induced pluripotent stem cells (hiPSCs). Introducing homozygous TBX19K146R/K146R missense pathogenic variant in hiPSC, an allele found in congenital isolated ACTHD, led to a strong reduction of corticotrophs number in pituitary organoids. Then, we characterized the development of organoids harboring NFKB2D865G/D865G mutations found in DAVID patients. NFKB2D865G/D865G mutation acted at different levels of development with mutant organoids displaying changes in the expression of genes involved on pituitary progenitor generation (HESX1, PITX1, LHX3), hypothalamic secreted factors (BMP4, FGF8, FGF10), epithelial-to-mesenchymal transition, lineage precursors development (TBX19, POU1F1) and corticotrophs terminal differentiation (PCSK1, POMC), and showed drastic reduction in the number of corticotrophs. Our results provide strong evidence for the direct role of NFKB2 mutations in the endocrine phenotype observed in patients leading to a new classification of a NFKB2 variant of previously unknown clinical significance as pathogenic in pituitary development.

    1. Developmental Biology
    2. Genetics and Genomics
    Debashish U Menon, Prabuddha Chakraborty ... Terry Magnuson
    Research Article

    We present evidence implicating the BAF (BRG1/BRM Associated Factor) chromatin remodeler in meiotic sex chromosome inactivation (MSCI). By immunofluorescence (IF), the putative BAF DNA binding subunit, ARID1A (AT-rich Interaction Domain 1 a), appeared enriched on the male sex chromosomes during diplonema of meiosis I. Germ cells showing a Cre-induced loss of ARID1A arrested in pachynema and failed to repress sex-linked genes, indicating a defective MSCI. Mutant sex chromosomes displayed an abnormal presence of elongating RNA polymerase II coupled with an overall increase in chromatin accessibility detectable by ATAC-seq. We identified a role for ARID1A in promoting the preferential enrichment of the histone variant, H3.3, on the sex chromosomes, a known hallmark of MSCI. Without ARID1A, the sex chromosomes appeared depleted of H3.3 at levels resembling autosomes. Higher resolution analyses by CUT&RUN revealed shifts in sex-linked H3.3 associations from discrete intergenic sites and broader gene-body domains to promoters in response to the loss of ARID1A. Several sex-linked sites displayed ectopic H3.3 occupancy that did not co-localize with DMC1 (DNA meiotic recombinase 1). This observation suggests a requirement for ARID1A in DMC1 localization to the asynapsed sex chromatids. We conclude that ARID1A-directed H3.3 localization influences meiotic sex chromosome gene regulation and DNA repair.