Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway

  1. Tolulope Sokoya
  2. Jan Parolek
  3. Mads Møller Foged
  4. Dmytro I Danylchuk
  5. Manuel Bozan
  6. Bingshati Sarkar
  7. Angelika Hilderink
  8. Michael Philippi
  9. Lorenzo D Botto
  10. Paulien A Terhal
  11. Outi Mäkitie
  12. Jacob Piehler
  13. Yeongho Kim
  14. Christopher G Burd
  15. Andrey S Klymchenko
  16. Kenji Maeda
  17. Joost CM Holthuis  Is a corresponding author
  1. Osnabrück University, Germany
  2. Danish Cancer Society, Denmark
  3. Université de Strasbourg, UMR 7021, CNRS, France
  4. University of Utah, United States
  5. Utrecht University, Netherlands
  6. University of Helsinki, Finland
  7. Yale University, United States

Abstract

Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file. Source Data files have been provided for Figures 2-4, 7-9 and Appendix 1 - figure 3.

Article and author information

Author details

  1. Tolulope Sokoya

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan Parolek

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mads Møller Foged

    Center for Autophagy, Recycling and Disease, Danish Cancer Society, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmytro I Danylchuk

    Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, UMR 7021, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Manuel Bozan

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8426-369X
  6. Bingshati Sarkar

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Angelika Hilderink

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Philippi

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Lorenzo D Botto

    Department of Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Paulien A Terhal

    Department of Genetics, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Outi Mäkitie

    Children's Hospital, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4547-001X
  12. Jacob Piehler

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2143-2270
  13. Yeongho Kim

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1477-925X
  14. Christopher G Burd

    Department of Cell Biology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1831-8706
  15. Andrey S Klymchenko

    Laboratoire de Bioimagerie et Pathologies, Université de Strasbourg, UMR 7021, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  16. Kenji Maeda

    Center for Autophagy, Recycling and Disease, Danish Cancer Society, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  17. Joost CM Holthuis

    Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
    For correspondence
    jholthuis@uni-osnabrueck.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8912-1586

Funding

Deutsche Forschungsgemeinschaft (SFB944-P14)

  • Joost CM Holthuis

Deutsche Forschungsgemeinschaft (HO3539/1-1)

  • Joost CM Holthuis

Deutsche Forschungsgemeinschaft (SFB944-P8)

  • Jacob Piehler

National Institutes of Health (R35 GM144096)

  • Christopher G Burd

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Sokoya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,354
    views
  • 528
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tolulope Sokoya
  2. Jan Parolek
  3. Mads Møller Foged
  4. Dmytro I Danylchuk
  5. Manuel Bozan
  6. Bingshati Sarkar
  7. Angelika Hilderink
  8. Michael Philippi
  9. Lorenzo D Botto
  10. Paulien A Terhal
  11. Outi Mäkitie
  12. Jacob Piehler
  13. Yeongho Kim
  14. Christopher G Burd
  15. Andrey S Klymchenko
  16. Kenji Maeda
  17. Joost CM Holthuis
(2022)
Pathogenic variants of sphingomyelin synthase SMS2 disrupt lipid landscapes in the secretory pathway
eLife 11:e79278.
https://doi.org/10.7554/eLife.79278

Share this article

https://doi.org/10.7554/eLife.79278

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.